Pain during inflammatory joint diseases is enhanced by the generation of hypersensitivity in nociceptive neurons in the peripheral nervous system. To explore the signaling mechanisms of mechanical hypersensitivity during joint inflammation, experimental arthritis was induced by injection of complete Freund's adjuvant (CFA) into the synovial cavity of rat knee joints. As a pain index, the struggle threshold of the knee extension angle was measured. In rats with arthritis, the phosphorylation of extracellular signal-regulated kinase (ERK), induced by passive joint movement, increased significantly in dorsal root ganglion (DRG) neurons innervating the knee joint compared to the naïve rats that received the same movement. The intrathecal injection of a MEK inhibitor, U0126, reduced the phosphorylation of ERK in DRG neurons and alleviated the struggle behavior elicited by the passive movement of the joint. In addition, the injection of U0126 into the joint also reduced the struggle behavior. These findings indicate that the ERK signaling is activated in both cell bodies in DRG neurons and peripheral nerve fibers and may be involved in the mechanical sensitivity of the inflamed joint. Furthermore, the phosphorylated ERK-positive neurons co-expressed the P2X3 receptor, and the injection of TNP-ATP, which antagonizes P2X receptors, into the inflamed joint reduced the phosphorylated ERK and the struggle behavior. Thus, it is suggested that the activation of the P2X3 receptor is involved in the phosphorylation of ERK in DRG neurons and the mechanical hypersensitivity of the inflamed knee joint.
LIA was associated with better pain relief with a comparable complications rate for patients undergoing TKA than FNB. We recommend LIA for pain relief after TKA.
Dipeptidyl peptidase‐4 (DPP‐4) inhibitors reduce the risk of hypoglycaemia, possibly through augmentation of glucose‐dependent insulinotropic polypeptide (GIP) action, but not that of glucagon‐like peptide‐1 (GLP‐1) on glucagon secretion. To examine this model in Japanese individuals with type 2 diabetes (T2D), the effects of the DPP‐4 inhibitor linagliptin on glucagon and other counter‐regulatory hormone responses to hypoglycaemia were evaluated and compared with those of the GLP‐1 receptor agonist liraglutide in a multi‐centre, randomized, open‐label, 2‐arm parallel comparative, exploratory trial. Three‐step hypoglycaemic clamp glucose tests preceded by meal tolerance tests were performed before and after 2‐week treatment with the drugs. Glucagon levels were increased during the hypoglycaemic clamp test at 2.5 mmol/L. This increase was similar in the linagliptin and liraglutide groups, both before and after the 2‐week treatment. Changes in other counter‐regulatory hormones (ie, growth hormone, cortisol, epinephrine and norepinephrine) were also similar between the groups, but were suppressed substantially after 2‐week treatment compared to baseline. In conclusion, we confirmed that the glucagon response to hypoglycaemia was not affected by linagliptin or liraglutide treatment in Japanese individuals with T2D.
A 31-year-old woman underwent rotational acetabular osteotomy for acetabular dysplasia. At surgery, the acetabular fragment and the grafted bone were fixed with PLLA screws. One year 7 months after surgery, the patient returned to our clinic with acute swelling and pain with sinus formation. Based on the diagnosis of an infection, local debridement was performed. Histological examination of the debrided tissue revealed inflammatory cells; however no organism was found growing on the bacterial culture. During subsequent attempts to drain the lesion, we found small PLLA particles.Thus, we diagnosed the condition as a continued inflammatory process due to foreign-body reaction to the fragmented screw material. After a repeat debridement, the inflammation subsided. At the final follow-up two years after the last procedure, there was no recurrence and the patient had returned to regular activities. This report represents the first case of a severe local reaction to PLLA implants at and around the major joints.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.