By immunohistochemistry, an effect of nerve injury on distribution of alpha-2/delta-1 subunit of L-type calcium channel was investigated in rat's 4th and 5th lumbar dorsal root ganglia (DRGs), trigeminal ganglion (TG), and mesencephalic trigeminal nucleus (Mes5). The immunoreactivity was expressed by 52.2% of DRG neurons and 31.4% of TG neurons in intact animals. These neurons mostly had small-to-medium-sized cell bodies. In the DRG and TG, alpha-2/delta-1 subunit-positive neurons were lightly or moderately stained. However, the number of alpha-2/delta-1 subunit-immunoreactive (-IR) neurons dramatically increased in the ipsilateral DRG at 3-28 days after sciatic nerve transection (75.3-79.5%) and in the ipsilateral TG at 7 days after infraorbital nerve transection (66.3%). The IR density of alpha-2/delta-1 subunit in DRG and TG neurons was also elevated by the transection. In the injured DRG and TG, many sensory neurons with small-to-medium-sized cell bodies were strongly stained. Some large DRG and TG neurons showing strong staining intensity also appeared after the treatment. In the intact Mes5, sensory neurons were mostly devoid of alpha-2/delta-1 subunit-immunoreactivity (0.4%). However, alpha-2/delta-1-IR sensory neurons on the ipsilateral side of the Mes5 dramatically increased at 7 days after masseteric nerve transection (31.3%). A double immunofluorescence method also demonstrated that c-Jun activating transcription factor 3 (ATF3)-positive DRG (98.3-99.9%) and Mes5 (81.8%) neurons mostly co-expressed alpha-2/delta-1 subunit after the nerve injuries. However, alpha-2/delta-1 subunit immunoreactivity was relatively infrequent among ATF3-immunonegative DRG neurons (51.6-74.1%) and Mes5 neurons (<1%). The present study indicates that the nerve injury increases the protein level of alpha-2/delta-1 subunit among several types of axotomized sensory neurons in the spinal and trigeminal nervous systems.
The human internal carotid nerve (ICN) occasionally has a swelling beneath the external opening of the carotid canal. In this study, the presence and distribution of neuronal cells were investigated in the bilateral ICNs of nine human cadavers. Among 44.4% of the cadavers, swellings were detected in the ICN. Their diameters ranged from 1.7 to 3.6 mm (average ± SD = 2.6 ± 0.7 mm). Thirty‐eight percent of these swellings were large (diameter > 3 mm) and showed an oval shape. The large swelling contained many neuronal cells. However, the ICNs with or without a swelling <3 mm diameter were mostly free from neuronal cells (93.3%). Only in one human cadaver, the right ICN without a swelling had a small number of neuronal cells. By the present immunohistochemical method, ICN neurons contained catecholamine‐synthesizing enzymes and neuropeptides. Dopamine‐beta hydroxylase‐ and tyrosine hydroxylase‐immunoreactivity were mostly expressed by ICN neurons. More than half of them also contained neuropeptide Y‐immunoreactivity. However, vasoactive intestinal polypeptide‐immunoreactive ICN neurons were relatively infrequent. Substance P‐ and calcitonin gene‐related peptide‐immunoreactive ICN neurons could not be detected. By the cell size analysis, neuropeptide Y‐immunoreactive neurons were significantly smaller than neuropeptide Y‐immunonegative neurons in the ICN. The present study suggests that ICN neurons have a sympathetic function in the human.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.