BackgroundWith the advent of Next Generation Sequencing (NGS) technologies, the ability to generate large amounts of sequence data has revolutionized the genomics field. Most RNA viruses have relatively small genomes in comparison to other organisms and as such, would appear to be an obvious success story for the use of NGS technologies. However, due to the relatively low abundance of viral RNA in relation to host RNA, RNA viruses have proved relatively difficult to sequence using NGS technologies. Here we detail a simple, robust methodology, without the use of ultra-centrifugation, filtration or viral enrichment protocols, to prepare RNA from diagnostic clinical tissue samples, cell monolayers and tissue culture supernatant, for subsequent sequencing on the Roche 454 platform.ResultsAs representative RNA viruses, full genome sequence was successfully obtained from known lyssaviruses belonging to recognized species and a novel lyssavirus species using these protocols and assembling the reads using de novo algorithms. Furthermore, genome sequences were generated from considerably less than 200 ng RNA, indicating that manufacturers’ minimum template guidance is conservative. In addition to obtaining genome consensus sequence, a high proportion of SNPs (Single Nucleotide Polymorphisms) were identified in the majority of samples analyzed.ConclusionsThe approaches reported clearly facilitate successful full genome lyssavirus sequencing and can be universally applied to discovering and obtaining consensus genome sequences of RNA viruses from a variety of sources.
Four novel phylogenetic clades of canine rabies virus (RABV) variants have been identified in the Middle East and North Africa. The three novel Middle Eastern clades comprise RABV isolates from the borders between Israel and neighbouring countries. The North African clade (Africa 4) comprises four RABV isolates from Egypt and one from Israel. We characterized various RABV lineages antigenically by using a panel of monoclonal antibodies to the nucleoprotein (N) and phylogenetically by analysis of entire N gene sequences. The estimated mean substitution rate for the N gene alignment (2.7610 "4 substitutions per site per year) is comparable with previous estimates for RABV. The application of a molecular clock indicates the emergence of current canine RABV diversity to have occurred at about the same time (approx. 1870) in the Middle East and Europe, following divergence from established lineages in Africa and Asia.
Streptococcus equi subsp. zooepidemicus (S. zooepidemicus) is a commensal of the mucous membranes and skin of animals, notably equine, and is associated with various infections in animals and humans. Here, we describe an outbreak of respiratory disease in a cattery, which, to the best of our knowledge, is the first report of S. zooepidemicus infection in cats. Clinical disease was characterized firstly by abundant purulent nasal discharges and cough, progressing to sinusitis, dyspnea, symptoms of pneumonia and death. Pathological examination revealed different degrees of inflammation of the lower respiratory tract. S. zooepidemicus was the main bacteria isolated. Sequencing of the V2 fragment of the 16S gene revealed that the isolates were distributed in two previously described genogroups.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.