Migration of stacked or zero-offset sections is based on deriving the wave amplitude in space from wave field observations at the surface. Conventionally this calculation has been carried out through a depth extrapolation. We examine the alternative of carrying out the migration through a reverse time extrapolation. This approach may offer improvements over existing migration methods, especially in cases of steeply dipping structures with strong velocity contrasts. This migration method is tested using appropriate synthetic data sets.
One of the nagging problems which arises in application of discrete solution methods for wave‐propagation calculations is the presence of reflections or wraparound from the boundaries of the numerical mesh. These undesired events eventually override the actual seismic signals which propagate in the modeled region. The solution to avoiding boundary effects used to be to enlarge the numerical mesh, thus delaying the side reflections and wraparound longer than the range of times involved in the modeling. Obviously this solution considerably increases the expense of computation. More recently, nonreflecting boundary conditions were introduced for the finite‐difference method (Clayton and Enquist, 1977; Reynolds, 1978). These boundary conditions are based on replacing the wave equation in the boundary region by one‐way wave equations which do not permit energy to propagate from the boundaries into the numerical mesh. This approach has been relatively successful, except that its effectiveness degrades for events which impinge on the boundaries at shallow angles. It is also not clear how to apply this type of boundary condition to global discrete methods such as the Fourier method for which all grid points are coupled.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.