Purpose -The purpose of this paper was to present how customized implants could be made with specific properties, by setting different values of the laser power, within the selective laser melting (SLM) process. A detailed case study was undertaken and a new multi-structured femoral prosthesis was designed and analyzed, to simulate its behavior for a specific case study. Design/methodology/approach -The materials and manufacturing methods are presented, with details regarding the SLM process, using the Realizer 250 machine. The laser power was varied between 50 and 200 W, thus obtaining samples with different physical and mechanical characteristics. All those sample parts were characterized and their properties were measured. Findings -A practical methodology was found to produce multi-structured implants by SLM. Significant changes of the porosity and properties were found, when modifying the laser power at the SLM machine. The studies have indicated an open porosity varying between 24.810.83 per cent. Tensile tests of the samples showed Young's modulus values varying between 13.5 and 104.5 GPa and an ultimate stress between 20.2 and 497.5 MPa. Research limitations/implications -There is no Additive Manufacturing (AM) machine available, to work with different laser power values, in different regions of the same section of the implant. Hence, a multi-structured implant cannot be obtained directly.Practical implications -The prosthesis should be specifically designed to contain separate models/regions to be made with appropriate laser power values. Originality/value -This paper presents a new method to design and manufacture a multi-structured implant, using the existing AM equipment. A detailed case study is presented, showing the design procedure, the way to simulate its behavior and the methods to produce the implants by SLM.
The aim of the present work was to estimate the feasibility of selective laser melting (SLM) to produce Ti-hydroxyapatite bioactive composite materials for personalised endosseous implants. Mixtures of Ti6Al7Nb surface conditioned powder with hydroxyapatite up to 5 vol.-% were processed by SLM with the same scanning strategy and laser power in the range of 50-200 W. Specimens with porous structures were characterised from a structural and mechanical point of view. Irrespective to the initial hydroxyapatite content, density increased by increasing the laser power. The microstructure of manufactured parts mainly consisted of a9 martensite. In materials with 5 vol.-% hydroxyapatite, a phosphorous containing phase formed as a consequence of hydroxyapatite decomposition and interaction with the base Ti alloy. By increasing the laser power, the tensile strength increased mainly due to the density improvement of all the investigated materials.
Background and aimBone defect reconstruction in the maxillofacial area comes as a necessity after traumatic, oncological or congenital pathology. Custom made implant manufacturing, such as selective laser melting (SLM), is very helpful when bone reconstruction is needed. In the present study we assessed the osseointegration of custom made implants made of Ti6Al7Nb with two different coatings: SiO2-TiO2 and hydroxyapatite, by comparing the bone mineral density (BMD) measured on micro-CT and the histological mineralized bone surrounding the implants.MethodsCustom made – cylindrical type – implants were produced by selective laser melting, coated with SiO2-TiO2 and hydroxyapatite and implanted in the rabbit femur. The animals (divided into 3 groups) were sacrificed at 1, 3 and 6 months and the implants were removed together with the surrounding bone. Bone mineral density and histological examination of the bone-implant surface was performed for each group.ResultsBMD and histological examination of the samples determined the quantity of mineralized bone at the implant site, showing a good percentage of mineralized bone for the coated implants at 1, 3 and 6 months. The measurements for the implants without coating showed a significant lower quantity of mineralized bone at 3 months compared with the implants with coating, and a good quantity of mineralized bone at 6 months, showing a process of demineralization followed by remineralization in the last month. The measurements of BMD showed similar results with the histological examination.ConclusionsThe use of micro-CT and the measurement of BMD are a reliable, minimally invasive and a quick method of osseointegration assessment.
Purpose -The purpose of this paper was to obtain by means of selective laser melting and then characterize biocomposites of medical-grade Ti6Al7Nb with hydroxyapatite (2 and 5 vol.%) and without hydroxyapatite, as reference. Design/methodology/approach -Rectangular samples were manufactured with the same scanning strategy; the laser power was between 50 W and 200 W. Processed samples were analysed by means of optical microscopy, scanning electron microscopy and microhardness. Findings -The results showed that despite the very short processing times, hydroxyapatite decomposed and interacted with the base Ti6Al7Nb material. The decomposition degree was found to depend on the applied laser power. From the porosity and bulk microstructure point of view, the most appropriate materials for the purposed medical applications were Ti6Al7Nb with hydroxyapatite processed with a laser power of 50 W. Originality/value -The originality of the present work consists in the study of the behaviour and interaction of hydroxyapatite additive with the Ti6Al7Nb base powder under selective laser melting conditions, as depending on the applied laser power.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.