Ho Chi Minh City (HCMC, Vietnam) is one of the fastest growing megacities in the world. In this paper, we attempt to analyse the dynamics of nutrients, suspended sediments, and water discharges in its aquatic systems today and in the future. The work is based on nine sampling sites along the Saigon River and one on the Dongnai River to identify the reference water status upstream from the urban area and the increase in fluxes that occur within the city and its surroundings. For the first time, the calculated fluxes allow drawing up sediment and nutrient budgets at the basin scale and the quantification of total nutrient loading to the estuarine and coastal zones (2012-2016 period). Based on both national Vietnamese and supplementary monitoring programs, we estimated the water, total suspended sediment, and nutrients (Total N, Total P, and dissolved silica: DSi) fluxes at 137 m 3 year −1 , tonSS year −1 , 5,323 tonN year −1 , 450 tonP year −1 , and m 3 year −1 for the Saigon River and 1,693 year −1 , 3,292 2,734 1,175 × 10 3 tonSi × 10 3 tonSS year −1 , 31,030 tonN year −1 , 1,653 tonP year −1 , and 31,138 tonSi year −1 for the Dongnai River, respectively. Nutrient fluxes provide an indicator of coastal eutrophication potential (indicator of coastal eutrophication potential), using nutrient stoichiometry ratios. Despite an excess of nitrogen and phosphorus over silica, estuarine waters downstream of the megacity are not heavily impacted by HCMC. Finally, we analysed scenarios of future trends (2025-2050) for the nutrient inputs on the basis of expected population growth in H C M C and improvement of wastewater treatment capacity. We observed that without the construction of a large number of additional wastewater treatment plants, the eutrophication problem is likely to worsen. The results are discussed in the context of the wastewater management policy.