We designed and realized highly fluorescent nanostructures composed of Eu3+ complexes under a protein coating. The nanostructured material, confirmed by photo-induced force microscopy (PiFM), includes a bottom fluorescent layer and an upper protein layer. The bottom fluorescent layer includes Eu3+ that is coordinated by 1,10-phenanthroline (Phen) and oleic acid (O). The complete complexes (OEu3+Phen) formed higher-order structures with diameter 40–150 nm. Distinctive nanoscale striations reminiscent of fingerprints were observed with a high-resolution transmission electron microscope (HRTEM). Stable fluorescence was increased by the addition of Eu3+ coordinated by Phen and 2-thenoyltrifluoroacetone (TTA), and confirmed by fluorescence spectroscopy. A satisfactory result was the observation of red Eu3+ complex emission through a protein coating layer with a fluorescence microscope. Lanthanide nanostructures of these types might ultimately prove useful for biometric applications in the context of human and non-human tissues. The significant innovations of this work include: (1) the structural set-up of the fluorescence image embedded under protein “skin”; and (2) dual confirmations of nanotopography and unique nanofingerprints under PiFM and under TEM, respectively.
Three-dimensional reduced graphene oxide (RGO) matrix decorated with nanoflowers of layered MoS2 (denoted as 3D MoS2/RGO) have been synthesized via a facile one-pot stepwise hydrothermal method. Graphene oxide (GO) is used as precursor of RGO and a 3D GO network is formed in the first-step of hydrothermal treatment. At the second stage of hydrothermal treatment, nanoflowers of layered MoS2 form and anchor on the surface of previously formed 3D RGO network. In this preparation, thiourea not only induces the formation of the 3D architecture at a relatively low temperature, but also works as sulfur precursor of MoS2. The synthesized composites have been investigated with XRD, SEM, TEM, Raman spectra, TGA, N2 sorption technique and electrochemical measurements. In comparison with normal MoS2/RGO composites, the 3D MoS2/RGO composite shows improved electrochemical performance as anode material for lithium-ion batteries. A high reversible capacity of 930[Formula: see text]mAh[Formula: see text][Formula: see text][Formula: see text]g[Formula: see text] after 130 cycles under a current density of 200[Formula: see text]mA[Formula: see text][Formula: see text][Formula: see text]g[Formula: see text] as well as good rate capability and superior cyclic stability have been observed. The superior electrochemical performance of the 3D MoS2/RGO composite as anode active material for lithium-ion battery is ascribed to its robust 3D structures, enhanced surface area and the synergistic effect between graphene matrix and the MoS2 nanoflowers subunit.
Porous DNA crystals with high intrinsic biocompatibility were designed to be used as scaffold materials, loaded with fluorescent guest molecules (fluorescent proteins/rare earth complexes) to detect anti-cancer drugs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.