The optimal morphology of nanotextured interfaces, which increase the photocurrent density of thin-film solar cells, is still an open question. While random morphologies have the advantage to scatter light into a broad angular range, they are more difficult to assess with Maxwell solvers, such as the finite-element method (FEM). With this study we aim to identify necessary requirements on the unit cell design for the accurate simulation of nanotextured thin-film solar cells with FEM.
The effect of decoupled front/back textures and the application of photonic and plasmonic nanostructures on the performance of thin silicon solar cells was studied. New light trapping concepts based on diffraction on periodic photonic nanostructures and scattering using plasmonic structures have potential to outperform the currently used randomly textured structures. The study demonstrates that supporting layers of solar cells, such as transparent conductive oxides, doped layers and back reflectors, are responsible for significant parasitic absorption losses that prevent achieving 4n 2 enhancement of light absorption in solar cells with silicon absorbers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.