Multilayer perceptron neural network is one of the widely used method for load forecasting. There are hyperparameters which can be used to determine the network structure and used to train the multilayer perceptron neural network model. This paper aims to propose a framework for grid search model based on the walk-forward validation methodology. The training process will specify the optimal models which satisfy requirement for minimum of accuracy scores of root mean square error, mean absolute percentage error and mean absolute error. The testing process will evaluate the optimal models along with the other ones. The results indicated that the optimal models have accuracy scores near the minimum values. The US airline passenger and Ho Chi Minh city load demand data were used to verify the accuracy and reliability of the grid search framework.
<p><span>With the development of today's society, demand for applications using digital cameras jumps over year by year. However, analyzing large amounts of video data causes one of the most challenging issues. In addition to storing the data captured by the camera, intelligent systems are required to quickly analyze the data to correct important situations. In this paper, we use deep learning techniques to build automatic models that describe movements on video. To solve the problem, we use three deep learning models: sequence-to-sequence model based on recurrent neural network, sequence-to-sequence model with attention and transformer model. We evaluate the effectiveness of the approaches based on the results of three models. To train these models, we use microsoft research video description corpus (MSVD) dataset including 1970 videos and 85,550 captions translated into Vietnamese. In order to ensure the description of the content in Vietnamese, we also combine it with the natural language processing (NLP) model for Vietnamese.</span></p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.