Wireless sensor networks are composed of low-energy, small-size, and low-range unattended sensor nodes. Recently, it has been observed that by periodically turning on and off the sensing and communication capabilities of sensor nodes, we can significantly reduce the active time and thus prolong network lifetime. However, this duty cycling may result in high network latency, routing overhead, and neighbor discovery delays due to asynchronous sleep and wake-up scheduling. These limitations call for a countermeasure for duty-cycled wireless sensor networks which should minimize routing information, routing traffic load, and energy consumption. In this article, we propose a lightweight non-increasing delivery-latency interval routing referred as LNDIR. This scheme can discover minimum latency routes at each non-increasing delivery-latency interval instead of each time slot. Simulation experiments demonstrated the validity of this novel approach in minimizing routing information stored at each sensor. Furthermore, this novel routing can also guarantee the minimum delivery latency from each source to the sink. Performance improvements of up to 12-fold and 11-fold are observed in terms of routing traffic load reduction and energy efficiency, respectively, as compared to existing schemes.
Today's IoT systems include event-driven smart applications (apps) that interact with sensors and actuators. A problem specific to IoT systems is that buggy apps, unforeseen bad app interactions, or device/communication failures, can cause unsafe and dangerous physical states. Detecting flaws that lead to such states, requires a holistic view of installed apps, component devices, their configurations, and more importantly, how they interact. In this paper, we design IotSan, a novel practical system that uses model checking as a building block to reveal "interaction-level" flaws by identifying events that can lead the system to unsafe states. In building IotSan, we design novel techniques tailored to IoT systems, to alleviate the state explosion associated with model checking. IotSan also automatically translates IoT apps into a format amenable to model checking. Finally, to understand the root cause of a detected vulnerability, we design an attribution mechanism to identify problematic and potentially malicious apps. We evaluate IotSan on the Samsung SmartThings platform. From 76 manually configured systems, IotSan detects 147 vulnerabilities. We also evaluate IotSan with malicious SmartThings apps from a previous effort. IotSan detects the potential safety violations and also effectively attributes these apps as malicious.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.