In wireless sensor networks, density control is an important technique for prolonging a network’s lifetime. To reduce the overall energy consumption, it is desirable to minimize the overlapping sensing area of the sensor nodes. In this paper, we study the problem of energy-efficient area coverage by the regular placement of sensors with adjustable sensing and communication ranges. We suggest a more accurate method to estimate efficiency than those currently used for coverage by sensors with adjustable ranges, and propose new density control models that considerably improve coverage using sensors with two sensing ranges. Calculations and extensive simulation show that the new models outperform existing ones in terms of various performance metrics.
Wireless sensor networks are composed of low-energy, small-size, and low-range unattended sensor nodes. Recently, it has been observed that by periodically turning on and off the sensing and communication capabilities of sensor nodes, we can significantly reduce the active time and thus prolong network lifetime. However, this duty cycling may result in high network latency, routing overhead, and neighbor discovery delays due to asynchronous sleep and wake-up scheduling. These limitations call for a countermeasure for duty-cycled wireless sensor networks which should minimize routing information, routing traffic load, and energy consumption. In this article, we propose a lightweight non-increasing delivery-latency interval routing referred as LNDIR. This scheme can discover minimum latency routes at each non-increasing delivery-latency interval instead of each time slot. Simulation experiments demonstrated the validity of this novel approach in minimizing routing information stored at each sensor. Furthermore, this novel routing can also guarantee the minimum delivery latency from each source to the sink. Performance improvements of up to 12-fold and 11-fold are observed in terms of routing traffic load reduction and energy efficiency, respectively, as compared to existing schemes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.