Large-scale software systems are currently designed as distributed entities and deployed in cloud data centers. To overcome the limitations inherent to this type of deployment, applications are increasingly being supplemented with components instantiated closer to the edges of networks—a paradigm known as edge computing. The problem of how to efficiently orchestrate combined edge-cloud applications is, however, incompletely understood, and a wide range of techniques for resource and application management are currently in use.
This article investigates the problem of reliable resource provisioning in joint edge-cloud environments, and surveys technologies, mechanisms, and methods that can be used to improve the reliability of distributed applications in diverse and heterogeneous network environments. Due to the complexity of the problem, special emphasis is placed on solutions to the characterization, management, and control of complex distributed applications using machine learning approaches. The survey is structured around a decomposition of the reliable resource provisioning problem into three categories of techniques: workload characterization and prediction, component placement and system consolidation, and application elasticity and remediation. Survey results are presented along with a problem-oriented discussion of the state-of-the-art. A summary of identified challenges and an outline of future research directions are presented to conclude the article.
The REliable CApacity Provisioning and enhanced remediation for distributed cloud applications (RECAP) project aims to advance cloud and edge computing technology, to develop mechanisms for reliable capacity provisioning, and to make application placement, infrastructure management, and capacity provisioning autonomous, predictable and optimized. This paper presents the RECAP vision for an integrated edge-cloud architecture, discusses the scientific foundation of the project, and outlines plans for toolsets for continuous data collection, application performance modeling, application and component auto-scaling and remediation, and deployment optimization. The paper also presents four use cases from complementing fields that will be used to showcase the advancements of RECAP.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.