Pardi and colleagues report on a vaccine platform in which purified, antigen-encoding, nucleoside-modified mRNA is encapsulated in lipid nanoparticles. Immunization with this vaccine elicits potent T follicular helper cell, germinal center B cell, and protective, neutralizing antibody responses.
Graphene is a novel material whose application in the biomedical sciences has only begun to be realized. In the present study, we have employed three-dimensional graphene foams as culture substrates for human mesenchymal stem cells and provide evidence that these materials can maintain stem cell viability and promote osteogenic differentiation.
A 3D microvascularized gelatin hydrogel is produced using thermoresponsive sacrificial poly(N-isopropylacrylamide) (PNIPAM) microfibers. The capillary-like microvascular network allows constant perfusion of media throughout the thick hydrogel, and signifcantly improves the viability of human neonatal dermal fibroblasts encapsulated within the gel at a high density.
Cardiomyocytes derived from human induced pluripotent stem cells (iPSC-CMs) hold great promise for modeling human heart diseases. However, iPSC-CMs studied to date resemble immature embryonic myocytes and therefore do not adequately recapitulate native adult cardiomyocyte phenotypes. Since extracellular matrix plays an essential role in heart development and maturation in vivo, we sought to develop a synthetic culture matrix that could enhance functional maturation of iPSC-CMs in vitro. In this study, we employed a library of combinatorial polymers comprising of three functional subunits - poly-ε-caprolacton (PCL), polyethylene glycol (PEG), and carboxylated PCL (cPCL) - as synthetic substrates for culturing human iPSC-CMs. Of these, iPSC-CMs cultured on 4%PEG-96%PCL (each % indicates the corresponding molar ratio) exhibit the greatest contractility and mitochondrial function. These functional enhancements are associated with increased expression of cardiac myosin light chain-2v, cardiac troponin I and integrin alpha-7. Importantly, iPSC-CMs cultured on 4%PEG-95%PCL demonstrate troponin I (TnI) isoform switch from the fetal slow skeletal TnI (ssTnI) to the postnatal cardiac TnI (cTnI), the first report of such transition in vitro. Finally, culturing iPSC-CMs on 4%PEG-96%PCL also significantly increased expression of genes encoding intermediate filaments known to transduce integrin-mediated mechanical signals to the myofilaments. In summary, our study demonstrates that synthetic culture matrices engineered from combinatorial polymers can be utilized to promote in vitro maturation of human iPSC-CMs through the engagement of critical matrix-integrin interactions.
Recently, the application of nanostructured materials in the field of tissue engineering has garnered attention to mediate treatment and regeneration of bone defects. In this study, poly(l-lactic acid) (PLLA)/gelatin (PG) fibrous scaffolds are fabricated and β-cyclodextrin (βCD) grafted nano-hydroxyapatite (HAp) is coated onto the fibrous scaffold surface via an interaction between βCD and adamantane. Simvastatin (SIM), which is known to promote osteoblast viability and differentiation, is loaded into the remaining βCD. The specimen morphologies are characterized by scanning electron microscopy. The release profile of SIM from the drug loaded scaffold is also evaluated. In vitro proliferation and osteogenic differentiation of human adipose derived stem cells on SIM/HAp coated PG composite scaffolds is characterized by alkaline phosphatase (ALP) activity, mineralization (Alizarin Red S staining), and real time Polymerase chain reaction (PCR). The scaffolds are then implanted into rabbit calvarial defects and analyzed by microcomputed tomography for bone formation after four and eight weeks. These results demonstrate that SIM loaded PLLA/gelatin/HAp-(βCD) scaffolds promote significantly higher ALP activity, mineralization, osteogenic gene expression, and bone regeneration than control scaffolds. This suggests the potential application of this material toward bone tissue engineering.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.