BackgroundThe bacterium Caulobacter crescentus is a popular model for the study of cell cycle regulation and senescence. The large prolate siphophage phiCbK has been an important tool in C. crescentus biology, and has been studied in its own right as a model for viral morphogenesis. Although a system of some interest, to date little genomic information is available on phiCbK or its relatives.ResultsFive novel phiCbK-like C. crescentus bacteriophages, CcrMagneto, CcrSwift, CcrKarma, CcrRogue and CcrColossus, were isolated from the environment. The genomes of phage phiCbK and these five environmental phage isolates were obtained by 454 pyrosequencing. The phiCbK-like phage genomes range in size from 205 kb encoding 318 proteins (phiCbK) to 280 kb encoding 448 proteins (CcrColossus), and were found to contain nonpermuted terminal redundancies of 10 to 17 kb. A novel method of terminal ligation was developed to map genomic termini, which confirmed termini predicted by coverage analysis. This suggests that sequence coverage discontinuities may be useable as predictors of genomic termini in phage genomes. Genomic modules encoding virion morphogenesis, lysis and DNA replication proteins were identified. The phiCbK-like phages were also found to encode a number of intriguing proteins; all contain a clearly T7-like DNA polymerase, and five of the six encode a possible homolog of the C. crescentus cell cycle regulator GcrA, which may allow the phage to alter the host cell’s replicative state. The structural proteome of phage phiCbK was determined, identifying the portal, major and minor capsid proteins, the tail tape measure and possible tail fiber proteins. All six phage genomes are clearly related; phiCbK, CcrMagneto, CcrSwift, CcrKarma and CcrRogue form a group related at the DNA level, while CcrColossus is more diverged but retains significant similarity at the protein level.ConclusionsDue to their lack of any apparent relationship to other described phages, this group is proposed as the founding cohort of a new phage type, the phiCbK-like phages. This work will serve as a foundation for future studies on morphogenesis, infection and phage-host interactions in C. crescentus.
Nebulette physically links desmin to sarcomeric actin in hearts. An intact desmin network is required for nebulette to function as major actin-binding protein in sarcomeres. This study provides biochemical evidence that the desmin–nebulette complex is involved in filament-forming desminopathy.
Net O 2 uptake was measured from maximal-effort 3-set, 8repetition seated leg press protocols on an isoinertial ergometer. Subjects (25 women, 9 men) did 2 workouts each exerting concentric-eccentric (CE) and concentric-only (CO) knee extensor forces to measure work and net caloric cost. Significant (p Ͻ 0.05) relationships between work and net caloric cost resulted from CE and CO workouts for the male, female, and total subject sample. Two-way repeated-measures analyses of variance showed CE workouts resulted in significantly higher work but not net caloric cost and values. CE workouts likely relied on the knee extensors series elastic element to perform an additional ϳ3,600 J of eccentric work at no additional net caloric cost. Unlike other exercise modes, maximal-effort eccentric actions on the isoinertial ergometer, as done in the current study, provide no additional net caloric cost and is thus safe to administer to populations in whom metabolic cost is a concern. . Inclusion of eccentric actions on net caloric cost resulting from isoinertial resistance exercise.
Intraflagellar transport (IFT) is essential for the assembly and maintenance of flagella and cilia. Recent biochemical studies have shown that IFT complex B (IFT-B) is comprised of two subcomplexes, IFT-B1 and IFT-B2. The IFT-B2 subunit IFT57 lies at the interface between IFT-B1 and IFT-B2. Here, using a Chlamydomonas reinhardtii mutant for IFT57, we tested whether IFT57 is required for IFT-B complex assembly by bridging IFT-B1 and IFT-B2 together. In the ift57-1 mutant, levels of IFT57 and other IFT-B proteins were greatly reduced at the whole-cell level. However, strikingly, in the protease-free flagellar compartment, while the level of IFT57 was reduced, the levels of other IFT particle proteins were not concomitantly reduced but were present at the wild-type level. The IFT movement of the IFT57-deficient IFT particles was also unchanged. Moreover, IFT57 depletion disrupted the flagellar waveform, leading to cell swimming defects. Analysis of the mutant flagellar protein composition showed that certain axonemal proteins were altered. Taken together, these findings suggest that IFT57 does not play an essential structural role in the IFT particle complex but rather functions to prevent it from degradation. Additionally, IFT57 is involved in transporting specific motility-related proteins.
The subjects of this study (n = 20; 16 women, 4 men) performed 10 weeks of leg press training using one of two exercise modes (isoload or isotonic) with no crossover. Their workouts, which were performed 3 times per week, involved 4 sets of 8 repetitions with maximal voluntary effort. Testing was performed pre- and posttraining to examine bone and muscle changes. Posttraining, both groups incurred significant concentric knee extensor strength and leg muscle mass gains, while the percentage of body fat and total body fat mass each decreased. Leg and total body bone mineral densities showed group-by-time interactions, as isoload exercise caused posttraining gains, while isoinertial values were unchanged. Bone resorption assays showed insignificant changes. Isoload training likely involved greater strain magnitudes and rates to evoke higher peak forces and osteogenesis. Transduction of the training stimulus may have involved (a) formation in response to microdamage, and (b) piezoelectric-induced potentials that stimulated site-specific osteoblast activity and osteogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.