While resistance exercise (REX) reduces ankle extensor (AE) mass and strength deficits during short-term unloading; additional treatments, concurrently administered with REX, are required to attenuate the greater losses seen with longer unloading periods. Subjects performed left leg REX, which otherwise refrained from ambulatory and weight-bearing activity for 40 days, while randomized to a capsule (placebo, albuterol) dosing regimen with no crossover to note whether albuterol helps REX mitigate unloading-induced AE losses. A third group of subjects served as unloaded controls. On days 0, 20, and 40, the following data were collected from the left leg: calf cross-sectional area and AE strength measures. Cross-sectional area was estimated using anthropometric methodology, whereas AE strength data were obtained from eight unilateral calf-press repetitions on an inertial-based REX device. Repeated-measures mixed-factorial 3 x 3 analyses of covariance, with day 0 values as a covariate, revealed group x time interactions for the strength variables eccentric total work (ETW) and average power (EAP). Tukey's honestly significant difference shows REX-placebo subjects incurred significant ETW and EAP losses by day 40, whereas the REX-albuterol treatment evoked strength gains to those same variables without concurrent muscle accretion. Corresponding concentric variables did not display similar changes. Day 40 control data significantly declined for many variables; relative to the REX-albuterol treatment, some losses were significant after 20 days. ETW and EAP gains to unloaded AE may be due to one or more mechanisms. Continued research identifying mechanisms responsible for such changes, as well as the safety of REX-albuterol administration in other models, is warranted.
Hind-limb-suspended rats incur attenuated bone loss with beta(2)-agonists, and humans note similar changes with concurrent resistance exercise. To examine if the beta(2)-agonist albuterol helps resistance exercise reduce unloading-induced bone loss, human subjects performed 40 days of unilateral limb suspension with their left legs, otherwise refraining from normal ambulatory activity. While performing left leg strength training 3 days.week(-1), subjects received a concurrent placebo or albuterol (16 mg.day(-1)) treatment. Left leg muscle and bone changes were analyzed with 2 x 2 analyses of covariance (ANCOVAs). Mechanical loading values were calculated from workouts and compared using a 2 x 5 analysis of variance (ANOVA) and a Tukey post hoc test. The resistance exercise-albuterol assignment evoked significant (p < 0.05) left leg bone mineral content (BMC) gains (+2.24%) after 40 days. During the final unloading days, the resistance exercise-placebo group's mechanical loading data declined (-13.91%) significantly (p < 0.05) versus initial values. A resistance exercise-albuterol assignment likely increased BMC by maintaining the mechanical loading stimulus.
The combined RE-albuterol treatment most likely evoked unloaded AEXT strength gains in women due to heightened myofibril sensitivity for Ca+2. Despite a drug/body mass covariate, gender-related differences should be interpreted with caution. Future work should compare absolute and relative beta2 agonist dosages on gender-related muscle mass and strength changes.
The subjects of this study (n = 20; 16 women, 4 men) performed 10 weeks of leg press training using one of two exercise modes (isoload or isotonic) with no crossover. Their workouts, which were performed 3 times per week, involved 4 sets of 8 repetitions with maximal voluntary effort. Testing was performed pre- and posttraining to examine bone and muscle changes. Posttraining, both groups incurred significant concentric knee extensor strength and leg muscle mass gains, while the percentage of body fat and total body fat mass each decreased. Leg and total body bone mineral densities showed group-by-time interactions, as isoload exercise caused posttraining gains, while isoinertial values were unchanged. Bone resorption assays showed insignificant changes. Isoload training likely involved greater strain magnitudes and rates to evoke higher peak forces and osteogenesis. Transduction of the training stimulus may have involved (a) formation in response to microdamage, and (b) piezoelectric-induced potentials that stimulated site-specific osteoblast activity and osteogenesis.
Changing to, or initiating FP/FOR combination therapy, is associated with a non-inferior proportion of patients who are severe exacerbation-free at a lower average annual cost compared with continuing or initiating treatment with FP/SAL.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.