We present a benchmark test suite and an automated machine learning procedure for evaluating supervised machine learning (ML) models for predicting properties of inorganic bulk materials. The test suite, Matbench, is a set of 13 ML tasks that range in size from 312 to 132k samples and contain data from 10 density functional theory-derived and experimental sources. Tasks include predicting optical, thermal, electronic, thermodynamic, tensile, and elastic properties given a material’s composition and/or crystal structure. The reference algorithm, Automatminer, is a highly-extensible, fully automated ML pipeline for predicting materials properties from materials primitives (such as composition and crystal structure) without user intervention or hyperparameter tuning. We test Automatminer on the Matbench test suite and compare its predictive power with state-of-the-art crystal graph neural networks and a traditional descriptor-based Random Forest model. We find Automatminer achieves the best performance on 8 of 13 tasks in the benchmark. We also show our test suite is capable of exposing predictive advantages of each algorithm—namely, that crystal graph methods appear to outperform traditional machine learning methods given ~104 or greater data points. We encourage evaluating materials ML algorithms on the Matbench benchmark and comparing them against the latest version of Automatminer.
The text-mining services for kinome curation track, part of BioCreative VI, proposed a competition to assess the effectiveness of text mining to perform literature triage. The track has exploited an unpublished curated data set from the neXtProt database. This data set contained comprehensive annotations for 300 human protein kinases. For a given protein and a given curation axis [diseases or gene ontology (GO) biological processes], participants’ systems had to identify and rank relevant articles in a collection of 5.2 M MEDLINE citations (task 1) or 530 000 full-text articles (task 2). Explored strategies comprised named-entity recognition and machine-learning frameworks. For that latter approach, participants developed methods to derive a set of negative instances, as the databases typically do not store articles that were judged as irrelevant by curators. The supervised approaches proposed by the participating groups achieved significant improvements compared to the baseline established in a previous study and compared to a basic PubMed search.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.