The paper presents the results of experimental study of an optical-beam tracking concept involving two systems based on different principles. One is all-optical tracking, which utilizes a nonlinear optical material providing automatic finetracking feature. Another is traditional opto-mechanical technology using a quadrant avalanche detector, a voice coilmirror actuator, control electronics, and computer interface. The possibility of establishing automatic mutual tracking between two communicating parties without involving computer-aided beam addressing has been experimentally proven. Capabilities and limitations of both systems are described. The all-optical system performs better than the traditional one when it tracking laser beam angular disturbances of magnitude of a few mrad and the jitter frequency is high (≥ 100 Hz). The traditional opto-mechanical system shows higher efficiency at lower jitter frequencies. A combination of an all-optical fine-tracking module and an opto-mechanical coarse tracking module is suggested for applications where using our originally proposed all-optical approach for both coarse and fine beam steering / tracking would be less efficient.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.