The development of the T- and natural killer (NK) cell growth factor IL-2 has been a sentinel force ushering in the era of immunotherapy in cancer. With the advent of clinical grade recombinant IL-2 in the mid-1980s, oncologists could for the first time directly manipulate lymphocyte populations with systemic therapy. By itself, recombinant IL-2 can induce clinical responses in up to 15% of patients with metastatic cancer or renal cell carcinoma. When administered with adoptively transferred tumor-reactive lymphocytes, IL-2 promotes T cell engraftment and response rates of up to 50% in metastatic melanoma patients. Importantly, these IL-2-driven responses can yield complete and durable responses in a subset of patients. However, the use of IL-2 is limited by toxicity and concern of the expansion of T regulatory cells. To overcome these limitations and improve response rates, other T cell growth factors, including IL-15 and modified forms of IL-2, are in clinical development. Administering T cell growth factors in combination with other agents, such as immune checkpoint pathway inhibitors, may also improve efficacy. In this study, we review the development of T- and NK cell growth factors and highlight current combinatorial approaches based on these reagents.
Constitutively activated signaling molecules are often the primary drivers of malignancy, and are favored targets for therapeutic intervention. However, the effectiveness of targeted inhibition of cell signaling can be blunted by compensatory signaling which generates adaptive resistance mechanisms and reduces therapeutic responses. Therefore, it is important to identify and target these compensatory pathways with combinations of targeted agents to achieve durable clinical benefit. In this report, we demonstrate the use of high-throughput combinatorial drug screening as a discovery tool to identify compensatory pathways that generate resistance to the cytotoxic effects of targeted therapy. We screened 420 drug combinations in 14 different cell lines representing three cancer lineages, and assessed the ability of each combination to cause synergistic cytotoxicity. Drug substitution studies were used to validate the functionally important drug targets. Of the 84 combinations that caused robust synergy in multiple cell lines, none were synergistic in more than half of the lines tested, and we observed no pattern of lineage specificity in the observed synergies. This reflects the plasticity of cell signaling networks, even among cell lines of the same tissue of origin. Mechanistic analysis of one novel synergistic combination identified in the screen, the multi-kinase inhibitor Ro31-8220 and lapatinib, demonstrated compensatory crosstalk between the p70S6 kinase and EGF receptor pathways. In addition, we identified BAD as a node of convergence between these two pathways that may be playing a role in the enhanced apoptosis observed upon combination treatment.
IL-2 is a lymphocyte growth factor that is an important component of many immune-based cancer therapies. The efficacy of IL-2 is thought to be limited by the expansion of T regulatory cells, which express the high affinity IL-2 receptor subunit, IL-2Rα. IL-15 is under investigation as an alternative to IL-2. Although both cytokines signal through IL-2Rβγ, IL-15 does not bind IL-2Rα and therefore induces less T regulatory cell expansion. However, we found that transferred effector CD8+ T cells induced curative responses in lymphoreplete mice only with IL-2-based therapy. While conventional in vitro assays showed similar effector T cell responsiveness to IL-2 and IL-15, upon removal of free cytokine, IL-2 mediated sustained signaling dependent on IL-2Rα. Mechanistically, IL-2Rα sustained signaling by promoting a cell-surface IL-2 reservoir and recycling of IL-2 back to the cell surface. Our results demonstrate that IL-2Rα endows T cells with the ability to compete temporally for limited IL-2 via mechanisms beyond ligand affinity. These results suggest that strategies to enhance IL-2Rα expression on tumor-reactive lymphocytes may facilitate the development of more effective IL-2-based therapies.
Eliminating the controllability of a noxious stimulus may induce a learned helplessness (LH) that resembles aspects of depression and post-traumatic stress disorder (PTSD). This study examined whether repetitive transcranial magnetic stimulation (rTMS) of the left dorsolateral prefrontal cortex (DLPFC) promotes resilience in an aversive stimulus model of LH. All 55 participants were told that an undisclosed sequence of button presses would terminate an aversive stimulus on their forearm. In truth, only half had control (+C). The other half had no control (−C). All participants received real (R) or sham (S) left DLPFC rTMS during the paradigm (+C/R, −C/S,+C/S, −C/R). We evaluated the cognitive effects of LH using an anagram task. The LH paradigm successfully reduced perceived control in the −C groups. As predicted, the +C/R and +C/S groups tended to give up less quickly and take less time to solve each anagram than did the −C/S group. Superior anagram performance in the −C/R group approached statistical significance. Our preliminary results suggest that manipulating the controllability of an aversive stimulus may induce a LH effect that manifests as impaired anagram performance. Further research is needed to refine this model and determine if DLPFC rTMS mitigates any LH effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.