Little information is available about how farmers in transition to organic practices should manage short-and long-term N fertility. The objectives of this research were (1) to evaluate the leguminous cover crops lablab (Dolichos lablab L.), soybean (Glycine max L.), sunn hemp (Crotalaria juncea L.) and a mixture of sunn hemp and cowpea (Vigna sinensis Endl.) as N sources; (2) to compare N availability and broccoli yield when cover crops were incorporated with conventional tillage (CT) or retained as a surface mulch using no-tillage (NT) practices; and (3) to quantify the amount of supplemental sidedress nitrogen required to maximize the yield of organic broccoli (Brassica oleracea Group Italica) on transition soils. Broccoli was grown during the first year after organic transition in the spring and fall of 2006 at the Kentland Agricultural Research Farm near Blacksburg, VA. Spring (P < 0.001) and fall (P < 0.001) broccoli yield increased as the rate of sidedress N was increased up to 112 kg N ha -1 , and showed a quadratic correlation with leaf N (P = < 0.001, R 2 = 0.80 and P = < 0.001, R 2 = 0.38, respectively). There was no difference in spring broccoli yield between CT and NT; however, CT produced the highest yield in the fall crop. At low sidedress N rates, leaf N was highest in CT plots, but tillage had no effect on N uptake at high N rates. This indicates that early season and perhaps total plant-available mineralized N was greater in CT than NT; however, potential N deficiency in NT soil may be compensated by sidedress N. Broccoli yield was not affected by leguminous cover crop, even though the quantity of cover crop biomass and N contribution was different among species. This suggests that N availability from leguminous cover crops may be impacted by other ecological processes such as soil microbial activity. This study shows that organic CT and NT growers can maximize broccoli yield in transition soils low in N availability, by using leguminous cover crops in combination with moderate amounts of sidedress N.
An open-market window has been identified in Virginia for fall broccoli (Brassica oleracea var. italica). Vegetable producers using plasticulture systems can capitalize on this opportunity by growing broccoli as a second crop after summer vegetables. The objective of this project was to evaluate suitability of two broccoli cultivars, Everest and Gypsy, for the fall production of large single-heads (>6 inches in diameter) for the fresh market. Planting density and rate of nitrogen (N) fertilizer (25, 60, and 100 lb/acre N) effects on yield characteristics were evaluated in a plasticulture system during a 3-year study (2003–05) conducted with broccoli transplants at the Virginia Polytechnic Institute and State University Kentland Agricultural Research Farm near Blacksburg, VA. The percentage of large heads was cultivar, plant density, and N rate dependent. The midseason ‘Gypsy’ produced significantly higher total yield and head weight compared with the early-season ‘Everest’. The optimum density to maximize floret production per area was 12,500 plants/acre and a supplemental N rate of 100 lb/acre. This N rate significantly (P < 0.002) improved marketable yield, large head yield, and leaf N accumulation compared with the lower rates. The data indicate that the feasibility of growing fall broccoli using a plasticulture system depends on the number of large heads produced for the fresh market. This in turn will depend on the choice of cultivar, stand establishment, and the requirement for supplemental N fertilizer over the residual level available in the soil after the first crop.
Weed suppression and nitrogen (N) management present the greatest challenges to organic growers. Cover crops, the strategic use of tillage, and multiple nitrogen sources are being investigated in order to develop integrated management practices. Combinations of legume and grass cover crops are being utilized as alternative N sources and as tools for weed suppression. Another objective is to compare conventional and no-till practices to determine when the strategic use of tillage is most beneficial for N management and weed control. The last objective is to evaluate the fate of applied N and N released from cover decomposition on crop development. The best combinations of cover crop species, the frequency and intensity of tillage, and optimum N rates will be determined for the production of organic broccoli. This project will aid growers interested in transitioning to organic farming. In addition, integrated management practices that balance the short-term needs for crop productivity and the long-term interests of sustainable production will be reported.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.