BackgroundDengue fever, a mosquito-borne disease, is associated with illness of varying severity in countries in the tropics and sub tropics. Dengue cases continue to be detected more frequently and its geographic range continues to expand. We report the largest documented laboratory confirmed circulation of dengue virus in parts of Kenya since 1982.MethodsFrom September 2011 to December 2014, 868 samples from febrile patients were received from hospitals in Nairobi, northern and coastal Kenya. The immunoglobulin M enzyme linked immunosorbent assay (IgM ELISA) was used to test for the presence of IgM antibodies against dengue, yellow fever, West Nile and Zika. Reverse transcription polymerase chain reaction (RT-PCR) utilizing flavivirus family, yellow fever, West Nile, consensus and sero type dengue primers were used to detect acute arbovirus infections and determine the infecting serotypes. Representative samples of PCR positive samples for each of the three dengue serotypes detected were sequenced to confirm circulation of the various dengue serotypes.ResultsForty percent (345/868) of the samples tested positive for dengue by either IgM ELISA (14.6 %) or by RT-PCR (25.1 %). Three dengue serotypes 1–3 (DENV1-3) were detected by serotype specific RT-PCR and sequencing with their numbers varying from year to year and by region. The overall predominant serotype detected from 2011–2014 was DENV1 accounting for 44 % (96/218) of all the serotypes detected, followed by DENV2 accounting for 38.5 % (84/218) and then DENV3 which accounted for 17.4 % (38/218). Yellow fever, West Nile and Zika was not detected in any of the samples tested.ConclusionFrom 2011–2014 serotypes 1, 2 and 3 were detected in the Northern and Coastal parts of Kenya. This confirmed the occurrence of cases and active circulation of dengue in parts of Kenya. These results have documented three circulating serotypes and highlight the need for the establishment of active dengue surveillance to continuously detect cases, circulating serotypes, and determine dengue fever disease burden in the country and region.
Kenya has experienced substantial amounts of reported cases of cholera during the past 14 years. Recent decreases in cholera case counts may reflect cholera control measures put in place by the National Ministry of Health; confirmation of this theory will require ongoing surveillance.
BackgroundShigellosis is the major cause of bloody diarrhoea worldwide and is endemic in most developing countries. In Kenya, bloody diarrhoea is reported weekly as part of priority diseases under Integrated Disease Surveillance and Response System (IDSR) in the Ministry of Health.MethodsWe conducted a case control study with 805 participants (284 cases and 521 controls) between January and December 2012 in Kilifi and Nairobi Counties. Kilifi County is largely a rural population whereas Nairobi County is largely urban. A case was defined as a person of any age who presented to outpatient clinic with acute diarrhoea with visible blood in the stool in six selected health facilities in the two counties within the study period. A control was defined as a healthy person of similar age group and sex with the case and lived in the neighbourhood of the case.ResultsThe main presenting clinical features for bloody diarrhoea cases were; abdominal pain (69 %), mucous in stool (61 %), abdominal discomfort (54 %) and anorexia (50 %). Pathogen isolation rate was 40.5 % with bacterial and protozoal pathogens accounting for 28.2 % and 12.3 % respectively. Shigella was the most prevalent bacterial pathogen isolated in 23.6 % of the cases while Entamoeba histolytica was the most prevalent protozoal pathogen isolated in 10.2 % of the cases. On binary logistic regression, three variables were found to be independently and significantly associated with acute bloody diarrhoea at 5 % significance level; storage of drinking water separate from water for other use (OR = 0.41, 95 % CI 0.20–0.87, p = 0.021), washing hands after last defecation (OR = 0.24, 95 % CI 0.08–.076, p = 0.015) and presence of coliforms in main source water (OR = 2.56, CI 1.21–5.4, p = 0.014). Rainfall and temperature had strong positive correlation with bloody diarrhoea.ConclusionThe main etiologic agents for bloody diarrhoea were Shigella and E. histolytica. Good personal hygiene practices such as washing hands after defecation and storing drinking water separate from water for other use were found to be the key protective factors for the disease while presence of coliform in main water source was found to be a risk factor. Implementation of water, sanitation and hygiene (WASH) interventions is therefore key in prevention and control of bloody diarrhoea.
BackgroundCholera remains an important public health concern in developing countries including Kenya where 11,769 cases and 274 deaths were reported in 2009 according to the World Health Organization (WHO). This ecological study investigates the impact of various climatic, environmental, and demographic variables on the spatial distribution of cholera cases in Kenya.MethodsDistrict-level data was gathered from Kenya’s Division of Disease Surveillance and Response, the Meteorological Department, and the National Bureau of Statistics. The data included the entire population of Kenya from 1999 to 2009.ResultsMultivariate analyses showed that districts had an increased risk of cholera outbreaks when a greater proportion of the population lived more than five kilometers from a health facility (RR: 1.025 per 1% increase; 95% CI: 1.010, 1.039), bordered a body of water (RR: 5.5; 95% CI: 2.472, 12.404), experienced increased rainfall from October to December (RR: 1.003 per 1 mm increase; 95% CI: 1.001, 1.005), and experienced decreased rainfall from April to June (RR: 0.996 per 1 mm increase; 95% CI: 0.992, 0.999). There was no detectable association between cholera and population density, poverty, availability of piped water, waste disposal methods, rainfall from January to March, or rainfall from July to September.ConclusionBordering a large body of water, lack of health facilities nearby, and changes in rainfall were significantly associated with an increased risk of cholera in Kenya.Electronic supplementary materialThe online version of this article (doi:10.1186/2049-9957-3-37) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.