52% Yes, a signiicant crisis 3% No, there is no crisis 7% Don't know 38% Yes, a slight crisis 38% Yes, a slight crisis 1,576 RESEARCHERS SURVEYED M ore than 70% of researchers have tried and failed to reproduce another scientist's experiments, and more than half have failed to reproduce their own experiments. Those are some of the telling figures that emerged from Nature's survey of 1,576 researchers who took a brief online questionnaire on reproducibility in research. The data reveal sometimes-contradictory attitudes towards reproduc-ibility. Although 52% of those surveyed agree that there is a significant 'crisis' of reproducibility, less than 31% think that failure to reproduce published results means that the result is probably wrong, and most say that they still trust the published literature. Data on how much of the scientific literature is reproducible are rare and generally bleak. The best-known analyses, from psychology 1 and cancer biology 2 , found rates of around 40% and 10%, respectively. Our survey respondents were more optimistic: 73% said that they think that at least half of the papers in their field can be trusted, with physicists and chemists generally showing the most confidence. The results capture a confusing snapshot of attitudes around these issues, says Arturo Casadevall, a microbiologist at the Johns Hopkins Bloomberg School of Public Health in Baltimore, Maryland. "At the current time there is no consensus on what reproducibility is or should be. " But just recognizing that is a step forward, he says. "The next step may be identifying what is the problem and to get a consensus. "
This article was originally submitted for publication to the Editor of Advances in Methods and Practices in Psychological Science (AMPPS) in 2015. When the submitted manuscript was subsequently posted online (Silberzahn et al., 2015), it received some media attention, and two of the authors were invited to write a brief commentary in Nature advocating for greater crowdsourcing of data analysis by scientists. This commentary, arguing that crowdsourced research "can balance discussions, validate findings and better inform policy" (Silberzahn & Uhlmann, 2015, p. 189), included a new figure that displayed the analytic teams' effectsize estimates and cited the submitted manuscript as the source of the findings, with a link to the preprint. However, the authors forgot to add a citation of the Nature commentary to the final published version of the AMPPS article or to note that the main findings had been previously publicized via the commentary, the online preprint, research presentations at conferences and universities, and media reports by other people. The authors regret the oversight.
The university participant pool is a key resource for behavioral research, and data quality is believed to vary over the course of the academic semester. This crowdsourced project examined time of semester variation in 10 known effects, 10 individual differences, and 3 data quality indicators over the course of the academic semester in 20 participant pools (N = 2,696) and with an online sample (N = 737). Weak time of semester effects were observed on data quality indicators, participant sex, and a few individual differences-conscientiousness, mood, and stress. However, there was little evidence for time of semester qualifying experimental or correlational effects. The generality of this evidence is unknown because only a subset of the tested effects demonstrated evidence for the original result in the whole sample. Mean characteristics of pool samples change slightly during the semester, but these data suggest that those changes are mostly irrelevant for detecting effects. Word count = 151Keywords: social psychology; cognitive psychology; replication; participant pool; individual differences; sampling effects; situational effects 4 Many Labs 3: Evaluating participant pool quality across the academic semester via replication University participant pools provide access to participants for a great deal of published behavioral research. The typical participant pool consists of undergraduates enrolled in introductory psychology courses that require students to complete some number of experiments over the course of the academic semester. Common variations might include using other courses to recruit participants or making study participation an option for extra credit rather than a pedagogical requirement. Research-intensive universities often have a highly organized participant pool with a participant management system for signing up for studies and assigning credit. Smaller or teaching-oriented institutions often have more informal participant pools that are organized ad hoc each semester or for an individual class.To avoid selection bias based on study content, most participant pools have procedures to avoid disclosing the content or purpose of individual studies during the sign-up process.However, students are usually free to choose the time during the semester that they sign up to complete the studies. This may introduce a selection bias in which data collection on different dates occurs with different kinds of participants, or in different situational circumstances (e.g., the carefree semester beginning versus the exam-stressed semester end).If participant characteristics differ across time during the academic semester, then the results of studies may be moderated by the time at which data collection occurs. Indeed, among behavioral researchers there are widespread intuitions, superstitions, and anecdotes about the "best" time to collect data in order to minimize error and maximize power. It is common, for example, to hear stories of an effect being obtained in the first part of the semester that then "d...
This study examined (a) the contribution of math self-efficacy to students' perception of their emotional and social engagement in fifth grade math classes, and (b) the extent to which high quality teacher-student interactions compensated for students' low math self-efficacy in contributing to engagement. Teachers (n = 73) were observed three times during the year during math to measure the quality of teacher-student interactions (emotional, organizational, and instructional support). Fifth graders (n = 387) reported on their math self-efficacy at the beginning of the school year and then were surveyed about their feelings of engagement in math class three times during the year immediately after the lessons during which teachers were observed. Results of multi-level models indicated that students initially lower in math self-efficacy reported lower emotional and social engagement during math class than students with higher self-efficacy. However, in classrooms with high levels of teacher emotional support, students reported similar levels of both emotional and social engagement, regardless of their self-efficacy. No comparable findings emerged for organizational and instructional support. The discussion considers the significance of students' own feelings about math in relation to their engagement, as well as the ways in which teacher and classroom supports can compensate for students lack of agency. The work has implications for school psychologists and teachers eager to boost students' engagement in math class.
Twenty-nine teams involving 61 analysts used the same dataset to address the same research question: whether soccer referees are more likely to give red cards to dark skin toned players than light skin toned players. Analytic approaches varied widely across teams, and estimated effect sizes ranged from 0.89 to 2.93 in odds ratio units, with a median of 1.31. Twenty teams (69%) found a statistically significant positive effect and nine teams (31%) observed a non-significant relationship. Overall 29 different analyses used 21 unique combinations of covariates. We found that neither analysts' prior beliefs about the effect, nor their level of expertise, nor peer-reviewed quality of analysis readily explained variation in analysis outcomes. This suggests that significant variation in analysis of complex data may be difficult to avoid, even by experts with honest intentions. Crowdsourcing data analysis, a strategy by which numerous research teams are recruited to simultaneously investigate the same research question, makes transparent how defensible, yet subjective analytic choices influence research results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.