Bradford Scholars -how to deposit your paper Overview Copyright check• Check if your publisher allows submission to a repository.• Use the Sherpa RoMEO database if you are not sure about your publisher's position or email openaccess@bradford.ac.uk.
We developed a three-step colloidal synthesis of near-infrared (NIR) active Cu−In−Se (CISe)-based nanocrystals (NCs) via a sequential partial cation exchange realized in one pot. In the first step, binary highly copper deficient Cu 2−x Se NCs were synthesized, followed by a partial cation exchange of copper to indium ions, yielding CISe NCs. This reaction allows for a precise control of the composition of the resulting NCs through a simple variation of the ratio between guest-cation precursors and parent NCs. To enhance the stability and the photoluminescence (PL) properties of the NCs, a subsequent ZnS shell was grown in the third step, resulting in CISeS/ZnS core/shell particles. These core/shell hetero-NCs exhibited a dramatic increase in size and a restructuring to trigonal pyramidal shape. The shell growth performed at a relatively high temperature (250°C) also led to anion exchange, in which sulfur replaced part of selenium atoms close to the surface of the NCs, forming alloyed CISeS core structure. This efficient anion exchange is rarely reported for I−III−VI-based nanomaterials. Furthermore, we demonstrated that at higher reaction temperature, it is possible to obtain In-rich CISeS/ZnS NCs whose emission was shifted to the visible region. Therefore, a careful tuning of the reaction parameters, such as the Cu:Se and Cu:In ratios, temperature, and time, enables a distinct control over the size and composition of the NCs while maintaining their crystal structure. By varying the size of the CISeS/ZnS NCs from 9 to 18 nm, the PL spectra could be tuned, covering a wide NIR range with maxima from 990 to 1210 nm. Thus, in these experiments, we demonstrated a clear dependence of the optical properties of these materials on their size and extended the PL range of CISe-based NCs further to the infrared part of the spectrum. The results obtained might be important not only to elucidation of fundamentals of ion exchange reactions but also may provide a general preparative approach to a wide variety of copper chalcogenide-based NCs with well-controlled size, shape, composition, and even crystal structure.
As an emerging class of porous materials, noble metal aerogels (NMAs) have drawn tremendous attention and displayed unprecedented potential in diverse fields. However, the development of NMAs is impeded by the fabrication methods because of their time-and cost-consuming procedures, limited generality, and elusive understanding of the formation mechanisms. Here, by revealing the self-healing behavior of noble metal gels and applying it in the gelation process at a disturbing environment, an unconventional and conceptually new strategy, i.e., a disturbance-promoted gelation method, is developed by introducing an external force field. It overcomes the diffusion limitation in the gelation process, thus producing monolithic gels within 1-10 min at room temperature, 2-4 orders of magnitude faster than for most reported methods. Moreover, versatile NMAs are acquired by using this method, and their superior (photo-)electrocatalytic properties are demonstrated for the first time in light of combined catalytic and optic properties.
The material-efficient monolayers of transition-metal dichalcogenides (TMDs) are a promising class of ultrathin nanomaterials with properties ranging from insulating through semiconducting to metallic, opening a wide variety of their potential applications from catalysis and energy storage to optoelectronics, spintronics, and valleytronics. In particular, TMDs have a great potential as emerging inexpensive alternatives to noble metal-based catalysts in electrochemical hydrogen evolution. Herein, we report a straightforward, low-cost, and general colloidal synthesis of various 2D transition-metal disulfide nanomaterials, such as MoS 2 , WS 2 , NiS x , FeS x , and VS 2 , in the absence of organic ligands. This new preparation route provides many benefits including relatively mild reaction conditions, high reproducibility, high yields, easy upscaling, no post-thermal annealing/treatment steps to enhance the catalytic activity, and, finally, especially for molybdenum disulfide nanosheets, high activity in the hydrogen evolution reaction. To underline the universal application of the synthesis, we prepared mixed Co x Mo 1−x S 2 nanosheets in one step to optimize the catalytic activity of pure undoped MoS 2 , which resulted in an enhanced hydrogen evolution reaction performance characterized by onset potentials as low as 134 mV and small Tafel slopes of 55 mV/dec.
Cation exchange emerged as a versatile tool to obtain a variety of nanocrystals not yet available via a direct synthesis. Reduced reaction times and moderate temperatures make the method compatible with anisotropic nanoplatelets (NPLs). However, the subtle thermodynamic and kinetic factors governing the exchange require careful control over the reaction parameters to prevent unwanted restructuring. Here, we capitalize on the research success of CdSe NPLs by transforming them into PbSe NPLs suitable for optoelectronic applications. In a two-phase mixture of hexane/Nmethylformamide, the oleate-capped CdSe NPLs simultaneously undergo a ligand exchange to NH 4 I and a cation exchange reaction to PbSe. Their morphology and crystal structure are well-preserved as evidenced by electron microscopy and powder X-ray diffraction. We demonstrate the successful ligand exchange and associated electronic coupling of individual NPLs by fabricating a simple photodetector via spray-coating on a commercial substrate. Its optoelectronic characterization reveals a fast light response at low operational voltages.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.