The article reviews the available information on the start of fruit tree cultivation in the Old World. On the basis of (i) evaluation of the available archeological remains and (ii) examination of the wild relatives of the cultivated crops, it was concluded that olive, grape, date, and fig were the first important horticultural additions to the Mediterranean grain agriculture. They were most likely domesticated in the Near East in protohistoric time (fourth and third millennia B.C.) and they emerge as important food elements in the early Bronze Age. Domestication of all four fruit trees was based on a shift from sexual reproduction (in the wild) to vegetative propagation of clones (under domestication). Olive, grape, date, and fig can be vegetatively propagated by simple techniques (cuttings, basal knobs, suckers) and were thus preadapted for domestication early in the development of agriculture. The shift to clonal propagation placed serious limitations on selection and on fruit set under cultivation. We have examined the consequences of this shift in terms of the genetic makeup of the cultivars and traced the various countermeasures that evolved to ensure fruit set. Finally, it was pointed out that in each of these classic fruit trees we are confronted with a variable complex of genuinely wild types, secondary weedy derivatives and feral plants, and groups of the domesticated clones, which are all interfertile and interconnected by occasional hybridization. It was concluded that introgression from the diversified wild gene pool facilitated the rapid buildup of variation in the domesticated crops.
If we accept the evidence at face value, we are led to conclude that emmer was probably domesticated in the upper Jordan watershed and that einkorn was domesticated in southeast Turkey. Barley could have been domesticated almost anywhere within the arc bordering the fertile crescent. All three cereals may well have been harvested in the wild state throughout their regions of adaptation long before actual farming began. The primary habitats for barley, however, are not the same as those for the wheats. Wild barley is more xerophytic and extends farther downslope and into the steppes and deserts along the wadis. It seems likely that, while all three early cereals were domesticated within an are flanking the fertile crescent, each was domesticated in a different subregion of the zone. Lest anyone should be led to think the problem is solved, we wish to close with a caveat. Domestication may not have taken place where the wild cereals were most abundant. Why should anyone cultivate a cereal where natural stands are as dense as a cultivated field? If wild cereal grasses can be harvested in unlimited quantities, why should anyone bother to till the soil and plant the seed? We suspect that we shall find, when the full story is unfolded, that here and there harvesting of wild cereals lingered on long after some people had learned to farm, and that farming itself may have orig inated in areas adjacent to, rather than in, the regions of greatest abundance of wild cereals. We need far more specific information on the climate during incipient domestication and many more carefully conducted excavations of sites in the appropriate time range. The problem is far from solved, but some knowledge of the present distribution of the wild forms should be helpful.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.