Fibroblast growth factor 23 (FGF23) regulates phosphate homeostasis, and its early rise in patients with chronic kidney disease (CKD) is independently associated with all-cause mortality. Since inflammation is characteristic of CKD and associates with increased plasma FGF23 we examined whether inflammation directly stimulates FGF23. In a population-based cohort, plasma tumor necrosis factor (TNF) was the only inflammatory cytokine that independently and positively correlated with plasma FGF23. Mouse models of CKD showed signs of renal inflammation, renal FGF23 expression and elevated systemic FGF23 levels. Renal FGF23 expression coincided with expression of the orphan nuclear receptor Nurr1 regulating FGF23 in other organs. Antibody-mediated neutralization of TNF normalized plasma FGF23 and suppressed ectopic renal Fgf23 expression. Conversely, TNF administration to control mice increased plasma FGF23 without altering plasma phosphate. Moreover, in Il10-deficient mice with inflammatory bowel disease and normal kidney function, plasma FGF23 was elevated and normalized upon TNF neutralization. Thus, the inflammatory cytokine TNF contributes to elevated systemic FGF23 levels and also triggers ectopic renal Fgf23 expression in animal models of CKD.
Fibroblast growth factor 23 (FGF23) regulates phosphate homeostasis and vitamin D metabolism. In patients with acute kidney injury (AKI), FGF23 levels rise rapidly after onset of AKI and are associated with AKI progression and increased mortality. In mouse models of AKI, excessive rise in FGF23 levels is accompanied by a moderate increase in FGF23 expression in bone. We examined the folic acid-induced AKI (FA-AKI) mouse model to determine whether other organs contribute to the increase in plasma FGF23 and assessed the vitamin D axis as a possible trigger for increased Fgf23 gene expression. Twenty-four hours after initiation of FA-AKI, plasma intact FGF23 and 1,25(OH)2D were increased and kidney function declined. FA-treated mice developed renal inflammation as shown by increased Tnf and Tgfb mRNA expression. Fgf23 mRNA expression was 5- to 15-fold upregulated in thymus, spleen and heart of FA-treated mice, respectively, but only 2-fold in bone. Ectopic renal Fgf23 mRNA expression was also detected in FA-AKI mice. Plasma FGF23 and Fgf23 mRNA expression in thymus, spleen, heart, and bone strongly correlated with renal Tnf mRNA expression. Furthermore, Vdr mRNA expression was upregulated in spleen, thymus and heart and strongly correlated with Fgf23 mRNA expression in the same organ. In conclusion, the rapid rise in plasma FGF23 in FA-AKI mice is accompanied by increased Fgf23 mRNA expression in multiple organs and increased Vdr expression in extra osseous tissues together with increased plasma 1,25(OH)2D and inflammation may trigger the rise in FGF23 in FA-AKI.
Dietary habits in the western world lead to increasing phosphate intake. Under physiological conditions, extraosseous precipitation of phosphate with calcium is prevented by a mineral buffering system composed of calcification inhibitors and tight control of serum phosphate levels. The coordinated hormonal regulation of serum phosphate involves fibroblast growth factor 23 (FGF23), αKlotho, parathyroid hormone (PTH) and calcitriol. A severe derangement of phosphate homeostasis is observed in patients with chronic kidney disease (CKD), a patient collective with extremely high risk of cardiovascular morbidity and mortality. Higher phosphate levels in serum have been associated with increased risk for cardiovascular disease (CVD) in CKD patients, but also in the general population. The causal connections between phosphate and CVD are currently incompletely understood. An assumed link between phosphate and cardiovascular risk is the development of medial vascular calcification, a process actively promoted and regulated by a complex mechanistic interplay involving activation of pro-inflammatory signalling. Emerging evidence indicates a link between disturbances in phosphate homeostasis and inflammation. The present review focuses on critical interactions of phosphate homeostasis, inflammation, vascular calcification and CVD. Especially, pro-inflammatory responses mediating hyperphosphatemia-related development of vascular calcification as well as FGF23 as a critical factor in the interplay between inflammation and cardiovascular alterations, beyond its phosphaturic effects, are addressed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.