Industrial utilization of lignin is of high interest since it represents around 30% of all nonfossil-based carbon sources worldwide. For various applications of lignosulfonates such as for dispersants or adhesives a larger molecular weight is essential. Here, we investigated laccase-catalyzed polymerization of lignosulfonate directly from the pulp and paper industry in the presence and absence of natural and synthetic mediators with and without oxygen supply. For example, laccase-mediated polymerization in the presence of a 2.5 mM TEMPO as mediator with a 10 cm 3 min −1 oxygen flow rate led to a 12-fold increase of the molecular weight, while without TEMPO a 13-fold increase was achieved. In contrast, without an external oxygen supply, only a 7-fold increase in molecular weight was achieved compared to a 4-fold increase for the TEMPO−laccase system. Fluorescence intensity, phenol content, and size exclusion chromatography measurements indicate that generally in the presence of high concentrations of mediators, such as TEMPO, vanillin, HBT, and 2,6-dimethoxyphenol, oxidation of other structural units in lignosulfonates may counteract desired polymerization reactions. In summary, for laccase-catalyzed polymerization of lignosulfonates, an external oxygen supply was found to be much more beneficial than the presence of laccase mediators.
A sensitive method for quantification of citric, fumaric, malic, malonic, oxalic, trans aconitic, and succinic acid in soil- and root-related samples is presented. The method is based on a novel, fast, and simple esterification procedure and subsequent analysis via liquid chromatography-mass spectrometry. Derivatization comprises in situ generation of HCl, which catalyzes the Fischer esterification with benzyl alcohol. As a key advance, the esterification with the aromate allows reversed-phase separation and improves electrospray ionization efficiency. The method provided procedural detection limits of 1 nM for citric, 47 nM for fumaric, 10 nM for malic, 10 nM for malonic, 16 nM for oxalic, 15 nM for succinic, and 2 nM for aconitic acid utilizing 500 μL of liquid sample. The working range was 3 nM to 10 μM for citric acid, 158 nM to 10 μM for fumaric acid, 34 nM to 10 μM for malic acid, 33 nM to 10 μM for malonic acid, 53 nM to 10 μM for oxalic acid, 48 nM to 10 μM for succinic acid, and 6 nM to 10 μM for aconitic acid. Quantification of the analytes in soil-related samples was performed via external calibration of the entire procedure utilizing (13)C-labeled oxalic and citric acid as internal standards. The robustness of the method was tested with soil extracts and samples from hydroponic experiments. The latter concerned the regulation of phosphorus solubilization via plant root exudation of citric, malic, and oxalic acid.
A bioactive O-carboxymethyl chitosan (CMCS) hydrogel crosslinked with natural phenolics with potential application in wound dressings was synthesized using a laccase from Myceliophthora thermophila (MTL). The highest degree of cross-linking (49.7%) was achieved with catechol. All the phenolic-CMCS hydrogels synthesized showed excellent anti-oxidant properties with a free radical scavenging activity up to 4-fold higher than in the absence of the phenolics, as quantified by the di(phenyl)-(2,4,6-trinitrophenyl)iminoazanium (DPPH) assay. In addition, the hydrogels produced showed an anti-inflammatory effect as evidenced by the inhibition of enzymes [myeloperoxidase (MPO), matrix-metalloproteinase-1 (MMP-1) and human neutrophil elastase (HNE)] over-expressed in chronic wounds. Sinapyl-CMCS hydrogels showed an MMP-1 inhibition of 37%. Further, the phenolic-CMCS hydrogels did not affect the viability of the NIH 3T3 mouse fibroblast cell line and were also able to slowly release human fibroblast growth factor 2, reaching 48.3% over a period of 28days. This study thus shows the possibility of synthesizing multifunctional bioactive chitosan based hydrogels with anti-oxidant and anti-inflammatory properties using natural occurring phenolics as crosslinkers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.