Hybridization and introgression can impact the evolution of natural populations. Several wild canid species hybridize in nature, sometimes originating new taxa. However, hybridization with free-ranging dogs is threatening the genetic integrity of grey wolf populations (Canis lupus), or even the survival of endangered species (e.g., the Ethiopian wolf C. simensis). Efficient molecular tools to assess hybridization rates are essential in wolf conservation strategies. We evaluated the power of biparental and uniparental markers (39 autosomal and 4 Y-linked microsatellites, a melanistic deletion at the β-defensin CBD103 gene, the hypervariable domain of the mtDNA control-region) to identify the multilocus admixture patterns in wolf x dog hybrids. We used empirical data from 2 hybrid groups with different histories: 30 presumptive natural hybrids from Italy and 73 Czechoslovakian wolfdogs of known hybrid origin, as well as simulated data. We assessed the efficiency of various marker combinations and reference samples in admixture analyses using 69 dogs of different breeds and 99 wolves from Italy, Balkans and Carpathian Mountains. Results confirmed the occurrence of hybrids in Italy, some of them showing anomalous phenotypic traits and exogenous mtDNA or Y-chromosome introgression. Hybridization was mostly attributable to village dogs and not strictly patrilineal. The melanistic β-defensin deletion was found only in Italian dogs and in putative hybrids. The 24 most divergent microsatellites (largest wolf-dog FST values) were equally or more informative than the entire panel of 39 loci. A smaller panel of 12 microsatellites increased risks to identify false admixed individuals. The frequency of F1 and F2 was lower than backcrosses or introgressed individuals, suggesting hybridization already occurred some generations in the past, during early phases of wolf expansion from their historical core areas. Empirical and simulated data indicated the identification of the past generation backcrosses is always uncertain, and a larger number of ancestry-informative markers is needed.
Through thousands of years of breeding and strong human selection, the dog (Canis lupus familiaris) exists today within hundreds of closed populations throughout the world, each with defined phenotypes. A singular geographic region with broad diversity in dog breeds presents an interesting opportunity to observe potential mechanisms of breed formation. Italy claims 14 internationally recognized dog breeds, with numerous additional local varieties. To determine the relationship among Italian dog populations, we integrated genetic data from 263 dogs representing 23 closed dog populations from Italy, seven Apennine gray wolves, and an established dataset of 161 globally recognized dog breeds, applying multiple genetic methods to characterize the modes by which breeds are formed within a single geographic region. Our consideration of each of five genetic analyses reveals a series of development events that mirror historical modes of breed formation, but with variations unique to the codevelopment of early dog and human populations. Using 142,840 genome‐wide SNPs and a dataset of 1,609 canines, representing 182 breeds and 16 wild canids, we identified breed development routes for the Italian breeds that included divergence from common populations for a specific purpose, admixture of regional stock with that from other regions, and isolated selection of local stock with specific attributes.
To identify genes with effects on meat quality and production traits we developed an adult porcine skeletal muscle cDNA library. After pre-screening this library with seven genes highly expressed in skeletal muscle, 385 non-hybridizing clones were sequenced from both ends to yield 510 expressed sequence tags (ESTs). Together with those ESTs previously generated from this library, we have produced 701 porcine skeletal muscle ESTs. These ESTs were grouped into 306 different cDNA species and compared with the human skeletal muscle transcriptional profiles obtained from different databases. Furthermore we mapped 107 of these cDNAs using a somatic cell hybrid panel with genes mapping over all the autosomes (except on chromosome 11) and on chromosome X. The mapping of these cDNAs contributed to the construction of a first genomic transcript map of the skeletal muscle tissue in pig.
Since its domestication, about 5000 years ago, the donkey (Equus asinus) has been extensively used as a work or draft animal in agricultural activities and for the transportation of people and goods. In the last century, technology improvement and growing mechanization strongly affected agriculture and the management and use of this livestock species in the industrialized countries. Nowadays, the use of donkeys for work or transport has almost disappeared, together with the need for mules or hinny breeding. During the last five decades, Italian autochthonous donkey populations suffered from a severe reduction in population size, which led to the extinction of several breeds. At present, eight breeds remain, all classified by FAO as critically endangered or endangered: Asinara, Pantesco, Grigio Siciliano, Romagnolo, Amiatino, Sardo Grigio, Martina Franca, and Ragusano. To evaluate the extant genetic variability of Italian donkeys, we typed 16 microsatellite loci in 258 individuals from these breeds. The results highlighted moderate levels of inbreeding ( F (IS) = 0.127) and a significant partition of genetic variation into breeds, as suggested by fixation index ( F (ST) = 0.109) and analysis of molecular variance (10.86% of total variation assigned to the between-breeds level) analyses. This was confirmed by a Bayesian clustering procedure that also highlighted a further partitioning at lower hierarchical levels corresponding to the farms of origin. This evidence suggests that an effective management strategy for Italian donkey populations should focus on breeds as conservation units. However, this requires a synergic management strategy at the farm level to maintain diversity and avoid inbreeding.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.