26After 54 years since its last major eruption in 1961, Calbuco volcano (Ensenada, 27 Southern Chile) reawakened with few hours of warning on 22 April 2015 at 18:05 local
Characterization, correlation and provenance determination of tephra samples in sedimentary sections (tephrochronological studies) are powerful tools for establishing ages of depositional events, volcanic eruptions, and tephra dispersion. Despite the large literature and the advancements in this research field, the univocal attribution of tephra deposits to specific volcanic sources remains too often elusive. In this contribution, we test the application of a machine learning technique named Support Vector Machine to attempt shedding new light upon tephra deposits related to one of the most complex and debated volcanic regions on Earth: the Pliocene-Pleistocene magmatism in Italy. The machine learning algorithm was trained using one of the most comprehensive global petrological databases (GEOROC); 17 chemical elements including major (SiO O 5 ) and selected trace (Sr, Ba, Rb, Zr, Nb, La, Ce) elements were chosen as input parameters. We first show the ability of support vector machines in discriminating among different Pliocene-Pleistocene volcanic provinces in Italy and then apply the same methodology to determine the volcanic source of tephra samples occurring in the Caio outcrop, an Early Pleistocene sedimentary section located in Central Italy. Our results show that: 1) support vector machines can successfully resolve high-dimensional tephrochronological problems overcoming the intrinsic limitation of two-and three-dimensional discrimination diagrams; 2) support vector machines can discriminate among different volcanic provinces in complex magmatic regions; 3) in the specific case study, support vector machines indicate that the most probable source for the investigated tephra samples is the so-called Roman Magmatic Province. These results have strong geochronological and geodynamical implications suggesting new age constraints (1.4 Ma instead of 0.8 Ma) for the starting of the volcanic activity in the Roman Magmatic Province.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.