Ionic liquids (ILs) are considered in the majority of cases green solvents, due to their virtually null vapor pressure and to the easiness in recycling them. In particular, imidazolium ILs are widely used in many fields of Chemistry, as solvents or precursors of N-heterocyclic carbenes (NHCs). The latter are easily obtained by deprotonation of the C2-H, usually using strong bases or cathodic reduction. Nevertheless, it is known that weaker bases (e.g., triethylamine) are able to promote C2-H/D exchange. From this perspective, the possibility of deprotonating C2-H group of an imidazolium cation by means of a basic counter-ion was seriously considered and led to the synthesis of imidazolium ILs spontaneously containing NHCs. The most famous of this class of ILs are N,N'-disubstituted imidazolium acetates. Due to the particular reactivity of this kind of ILs, they were appointed as “organocatalytic ionic liquids” or “proto-carbenes.” Many papers report the use of these imidazolium acetates in organocatalytic reactions (i. e., catalyzed by NHC) or in stoichiometric NHC reactions (e.g., with elemental sulfur to yield the corresponding imidazole-2-thiones). Nevertheless, the actual presence of NHC in N,N'-disubstituted imidazolium acetate is still controversial. Moreover, theoretical studies seem to rule out the presence of NHC in such a polar environment as an IL. Aim of this Mini Review is to give the reader an up-to-date overview on the actual or potential presence of NHC in such an “organocatalytic ionic liquid,” both from the experimental and theoretical point of view, without the intent to be exhaustive on N,N'-disubstituted imidazolium acetate applications.
The electrochemical oxidation of theophylline was investigated by controlled potential electrolysis in two different organic solvents and in water for comparison. The anodic oxidation was monitored by cyclic voltammetry in situ and UV‐Vis spectrophotometry ex situ and the final electrolyzed solutions were analyzed by tandem mass spectrometry after chromatographic separation with an HPLC‐PDA‐ESI‐MS/MS system. The main oxidation products evidenced as the main diode array chromatographic peaks were tentatively assigned to dimeric forms of theophylline, two of which have never been reported before, on the base of retention time, UV‐Vis spectrum, m/z ratio in both positive and negative ESI modes and fragmentation pattern. Two chemical paths following the primary mono‐electronic anodic oxidation of theophylline to the final evidenced oxidation products have been proposed.
The cathodic reduction of dicationic imidazolium bromides, whose spacer is either an aliphatic chain or a xylyl group, leads to the formation of the corresponding N‐heterocyclic carbenes (NHCs), which were isolated as the corresponding thiones, after reaction with elemental sulfur. The behaviour of the dications was compared with the corresponding monocations. The behaviour of dicarbenes depends on the nature of the spacer. This study evidenced that dicarbenes deriving from xylyl dications are less stable than the corresponding aliphatic ones (giving lower yields in thiones), due to a debenzylation reaction. On the other hand, the yields in thiones starting from aliphatic dications are higher than the corresponding monocations, suggesting a cooperative reduction at the electrode of the two imidazolium moieties. The cathodic process was confirmed using the co‐electrogenerated hydrogen to reduce 2,2,2‐trifluoroacetophenone to the corresponding alcohol.
Carbon quantum dots (CDs) are “small” carbon nanostructures with excellent photoluminescence properties, together with low‐toxicity, high biocompatibility, excellent dispersibility in water as well as organic solvents. Due to their characteristics, CDs have been studied for a plethora of applications as biosensors, luminescent probes for photodynamic and photothermal therapy, fluorescent inks and many more. Moreover, the possibility to obtain carbon dots from biomasses and/or organic waste has strongly promoted the interest in this class of carbon‐based nanoparticles, having a promising impact in the view of circular economy and sustainable processes. Within this context, electrochemistry proved to be a green, practical, and efficient method for the synthesis of high‐quality CDs, with the possibility to fine‐tune their characteristics by changing operational parameters. This review outlines the principal and most recent advances in the electrochemical synthesis of CDs, focusing on the electrochemical set‐up optimization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.