This paper analyzes stochastic networks consisting of a set of finite capacity sites where different classes of individuals move according to some routing policy. The associated Markov jump processes are analyzed under a thermodynamic limit regime, that is, when the networks have some symmetry properties and when the number of nodes goes to infinity. An intriguing stability property is proved: under some conditions on the parameters, it is shown that, in the limit, several stable equilibrium points coexist for the empirical distribution. The key ingredient of the proof of this property is a dimension reduction achieved by the introduction of two energy functions and a convenient mapping of their local minima and saddle points. Networks with a unique equilibrium point are also presented.Comment: Published in at http://dx.doi.org/10.1214/009117907000000105 the Annals of Probability (http://www.imstat.org/aop/) by the Institute of Mathematical Statistics (http://www.imstat.org
A stochastic model for a mobile network is studied. Users enter the network, and then perform independent Markovian routes between nodes where they receive service according to the Processor-Sharing policy. Once their service requirement is satisfied, they leave the system. The stability region is identified via a fluid limit approach, and strongly relies on a "spatial homogenization" property: at the fluid level, customers are instantaneously distributed across the network according to the stationary distribution of their Markovian dynamics and stay distributed as such as long as the network is not empty. In the unstable regime, spatial homogenization almost surely holds asymptotically as time goes to infinity (on the normal scale), telling how the system fills up. One of the technical achievements of the paper is the construction of a family of martingales associated to the multidimensional process of interest, which makes it possible to get crucial estimates for certain exit times.Comment: Published in at http://dx.doi.org/10.1214/09-AAP613 the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org
This paper analyzes stochastic networks consisting of finite capacity nodes with different classes of requests which move according to some routing policy. The Markov processes describing these networks do not, in general, have reversibility properties, so the explicit expression of their invariant distribution is not known. Kelly's limiting regime is considered: the arrival rates of calls as well as the capacities of the nodes are proportional to a factor going to infinity. It is proved that, in limit, the associated rescaled Markov process converges to a deterministic dynamical system with a unique equilibrium point characterized by a nonstandard fixed point equation.Comment: Published at http://dx.doi.org/10.1214/105051606000000466 in the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org
The convergence to equilibrium of the renormalized M/M/N/N queue is analysed. Upper bounds on the distance to equilibrium are obtained and the cut-off property for two regimes of this queue is proved. Simple probabilistic methods, such as coupling techniques and martingales, are used to obtain these results.
Abstract. A simple analytical solution is proposed for the stationary loss system of two parallel queues with finite capacity K, in which new customers join the shortest queue, or one of the two with equal probability if their lengths are equal. The arrival process is Poisson, service times at each queue have exponential distributions with the same parameter, and both queues have equal capacity. Using standard generating function arguments, a simple expression for the blocking probability is derived, which as far as we know is original. Using coupling arguments and explicit formulas, comparisons with related loss systems are then provided. Bounds are similarly obtained for the average total number of customers, with the stationary distribution explicitly determined on {K, . . . , 2K}, and elsewhere upper bounded. Furthermore, from the balance equations, all stationary probabilities are obtained as explicit combinations of their values at states (0, k) for 0 ≤ k ≤ K. These expressions extend to the infinite capacity and asymmetric cases, i.e., when the queues have different service rates. For the initial symmetric finite capacity model, the stationary probabilities of states (0, k) can be obtained recursively from the blocking probability. In the other cases, they are implicitly determined through a functional equation that characterizes their generating function. The whole approach shows that the stationary distribution of the infinite capacity symmetric process is the limit of the corresponding finite capacity distributions. For the infinite capacity symmetric model, we provide an elementary proof of a result by Cohen which gives the solution of the functional equation in terms of an infinite product with explicit zeroes and poles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.