Uncertainties surrounding tree carbon allocation to growth are a major limitation to projections of forest carbon sequestration and response to climate change. The prevalence and extent to which carbon assimilation (source) or cambial activity (sink) mediate wood production are fundamentally important and remain elusive. We quantified source-sink relations across biomes by combining eddy-covariance gross primary production with extensive on-site and regional tree ring observations. We found widespread temporal decoupling between carbon assimilation and tree growth, underpinned by contrasting climatic sensitivities of these two processes. Substantial differences in assimilation-growth decoupling between angiosperms and gymnosperms were determined, as well as stronger decoupling with canopy closure, aridity, and decreasing temperatures. Our results reveal pervasive sink control over tree growth that is likely to be increasingly prominent under global climate change.
We examined the effect of soil microbial communities on plant physiological responses to drought. Bouteloua gracilis seeds were planted in sterilized sand with (inoculated) and without (controls) soil microbial communities. After substantial growth, drought was imposed by completely withholding water. Before soil moisture declined to zero, inoculated plants germinated faster, were significantly taller, and maintained greater soil moisture than controls. The greater soil moisture of the inoculated plants allowed greater photosynthesis but also induced lower tissue drought tolerance (as indicated by turgor loss point) compared to controls. The inoculated plants were more susceptible to severe drought compared to control plants as indicated by significantly lower mean stomatal conductance, as well as marginally significantly greater mean wilting score, for the entire severe drought period after soil moisture declined to zero. Inoculated plants exhibited enhanced growth and photosynthesis and dampened drought stress over short timescales, but also increased susceptibility to drought over long timescales. This work demonstrates (1) an unexpected insight that microbes can have positive initial effects on plant performance, but negative impacts on plant performance during severe drought, and (2) that microbially altered effects on plant function during well-watered and moderate drought conditions can influence plant function under subsequent severe drought.
A century of fire suppression across the Western United States has led to more crowded forests and increased competition for resources. Studies of forest thinning or stand conditions after mortality events have provided indirect evidence for how competition can promote drought stress and predispose forests to severe fire and/or bark beetle outbreaks. Here, we demonstrate linkages between fire deficits and increasing drought stress through analyses of annually resolved tree‐ring growth, fire scars, and carbon isotope discrimination (Δ13C) across a dry mixed‐conifer forest landscape. Fire deficits across the study area have increased the sensitivity of leaf gas exchange to drought stress over the past >100 years. Since 1910, stand basal area in these forests has more than doubled and fire‐return intervals have increased from 25 to 140 years. Meanwhile, the portion of interannual variation in tree‐ring Δ13C explained by the Palmer Drought Severity Index has more than doubled in ca. 300–500‐year‐old Pinus ponderosa as well as in fire‐intolerant, ca. 90–190‐year‐old Abies grandis. Drought stress has increased in stands with a basal area of ≥25 m2/ha in 1910, as indicated by negative temporal Δ13C trends, whereas stands with basal area ≤25 m2/ha in 1910, due to frequent or intense wildfire activity in decades beforehand, were initially buffered from increased drought stress and have benefited more from rising ambient carbon dioxide concentrations, [CO2], as demonstrated by positive temporal Δ13C trends. Furthermore, the average Δ13C response across all P. ponderosa since 1830 indicates that photosynthetic assimilation rates and stomatal conductance have been reduced by ~10% and ~20%, respectively, compared to expected trends due to increasing [CO2]. Although disturbance legacies contribute to local‐scale intensity of drought stress, fire deficits have reduced drought resistance of mixed‐conifer forests and made them more susceptible to challenges by pests and pathogens and other disturbances.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.