The occurrence and the style of volcanic eruptions are largely controlled by the ways in which magma is stored and transported from the mantle to the surface through the crust. Nevertheless, our understanding of the deep roots of volcano-magmatic systems remains very limited. Here, we use the sources of seismovolcanic tremor to delineate the active part of the magmatic system beneath the Klyuchevskoy Volcanic Group in Kamchatka, Russia. The tremor sources are distributed in a wide spatial region over the whole range of crustal depths connecting different volcanoes of the group. The tremor activity is characterized by rapid vertical and lateral migrations explained by fast pressure transients and dynamic permeability. Our results support the conceptual model of extended and highly dynamic trans-crustal magmatic systems.
Klyuchevskoy and surrounding volcanoes in central Kamchatka form the Northern Group of Volcanoes (NGV), which is an area of particularly diverse and intensive Pleistocene-Holocene volcanism. In this study, we present a new seismic tomographic model of the crust and uppermost mantle beneath NGV based on local earthquake data recorded by several permanent and temporary seismic networks including a large-scale experiment that was conducted in 2015-2016 by an international scientific consortium. Having an unprecedented resolution for this part of Kamchatka, the new model reveals many features associated with the present and past volcanic activity within the NGV. In the upper crust, we found several prominent high-velocity anomalies interpreted as traces of large basaltic shield volcanoes, which were hidden by more recent volcanic structures and sediments. We interpret the mantle structure to reflect asthenospheric flow up through a slab window below the Kamchatka-Aleutian junction that feeds the entire NGV. The interaction of the hot asthenospheric material with fluids released from the slab determines the particular volcanic activity within the NGV. We argue that the eastern branch of the Central Kamchatka Depression, which is associated with a prominent low-velocity anomaly in the uppermost mantle, was formed as a recent rift zone separating the NGV from the Kamchatka Eastern Ranges.
Klyuchevskoy and surrounding volcanoes in central Kamchatka form the Northern Group of Volcanoes (NGV), which is an area of particularly diverse and intensive Pleistocene-Holocene volcanism. In this study, we present a new seismic tomographic model of the crust and uppermost mantle beneath NGV based on local earthquake data recorded by several permanent and temporary seismic networks including a large-scale experiment that was conducted in 2015-2016 by an international scientific consortium. Having an unprecedented resolution for this part of Kamchatka, the new model reveals many features associated with the present and past volcanic activity within the NGV. In the upper crust, we found several prominent high-velocity anomalies interpreted as traces of large basaltic shield volcanoes, which were hidden by more recent volcanic structures and sediments. We interpret the mantle structure to reflect asthenospheric flow up through a slab window below the Kamchatka-Aleutian junction that feeds the entire NGV. The interaction of the hot asthenospheric material with fluids released from the slab determines the particular volcanic activity within the NGV. We argue that the eastern branch of the Central Kamchatka Depression, which is associated with a prominent low-velocity anomaly in the uppermost mantle, was formed as a recent rift zone separating the NGV from the Kamchatka Eastern Ranges.
Global Navigation Satellite Systems have been extensively used to investigate the ionosphere response to various natural and man-made phenomena for the last three decades. However, ionospheric reaction to volcano eruptions is still insufficiently studied and understood. In this work we analyzed the ionospheric response to the 11–16 June 2009 VEI class 4 Sarychev Peak volcano eruption by using surrounding Russian and Japanese GPS networks. Prominent covolcanictotal electron content (TEC)ionospheric disturbances (CVIDs) with amplitudes and periods ranged between 0.03–0.15 TECU and 2.5–4.5 min were discovered for the three eruptive events occurred at 18:51 UT, 14 June; at 01:15 and 09:18 UT, 15 June 2009. The estimates of apparent CVIDs velocities vary within 700–1000 m/s in the far-field zone (300–900 km to the southwest from the volcano) and 1300–1800 m/s in close proximity toSarychev Peak. The characteristics of the observed TEC variations allow us to attribute them to acoustic mode. The south-southwestward direction is preferred for CVIDs propagation. We concluded that the ionospheric response to a volcano eruption is mainly determined by a ratio between explosion strength and background ionization level. Some evidence of secondary (F2-layer) CVIDs’ source eccentric location were obtained.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.