By making use of the Hamilton-Jacobi equation, we obtain the exact value of the electronic energy levels for the heteromolecular ions HeH 2ϩ , LiH 3ϩ , and BeH 4ϩ as a function of nuclear distance. The Hylleraas method in association with the series established by Wind-Jaffé was applied to these molecular ions. The results are in good agreement with those found in the literature.
The objective of the work was to estimate maintenance and energy gain requirements in the phases: 01 to 15 and 15 to 35 days of age. For maintenance energy, 240 quails (per phase) were used according to a completely randomized design, with four treatments (ad libitum, 75%, 50% and 25%), six replicates, and ten quails per experimental unit (n = 655). Comparative slaughter group (35-initial phase; 25-growth phase). To estimate energy for gain, groups of 15 quails were slaughtered at 3, 6, 9, 12 and 15 days of age, in the initial phase, and groups of 10 quails at 20, 25, 30 and 35 days of age, in the growth phase. All slaughter was performed after a 12-hour fast. The equation of energy retained as a function of consumption made it possible to estimate an endogenous energy loss around 9.30 and 19.59 kcal/kg0.67/day and maintenance requirements at 54.96 and 91.48 kcal/kg0.67/day, respectively for the initial and growth phases. The angular coefficient of the line obtained by the linear relationship between energy retained and carcass weight over time allowed estimating the net weight gain requirements around 1.40 and 1.89 kcal/g, respectively, for the initial and growth. EMA1–15d = (54.96 × P0.67) + (8.30 × WG). EMA15-35d = (92.11 × P0.67) + (8.91 × WG). EMA - apparent metabolizable energy, (Kcal/quail /d); P, live weight (kg); WG, weight gain (g/quail/d).
An experiment was performed using 1,000 laying Japanese quails to assess the availability of two alternative dietary methionine sources. Treatment 01 = Basal Feed that is deficient in digestible methionine + cystine (Met + Cys). The other treatments were constituted by Met + Cys levels of 0.8, 1.60 and 2.40 g/kg, supplemented with DL-Methionine-99%, HMTBA-88% and HMTBA-84%, being 10 treatments in total. The following characteristics were studied: feed intake (g/bird/day), egg production (egg/day × 100), egg weight (g/egg), egg mass (g/egg), feed conversion per egg dozen (kg feed/dozen eggs), feed conversion per egg mass (kg feed/kg eggs), relative yolk weight (g/100 g of egg), relative albumen weight (g/100 g of egg), relative shell weight (g/100 g of egg), shell thickness (mm) and specific gravity (g/cm ). In general result comment, supplemental methionine sources must be included in the poultry diet. The different methionine sources affect the performance of quails, and the increase in the levels within each source improves the performance variables. Significant effect was observable on performance variables and egg quality variables, being that DLM-99% is superior to the other sources. The HMTBA-88% source is superior to the HMTBA-84% source for the same aforementioned variables. In conclusion, the bioefficacy values of the HMTBA-88% and HMTBA-84% sources compared to the DLM-99% source on an equimolar basis were 81 and 79%, respectively, for the performance variables, and 83 and 74 while the methionine sources were equivalent for the variables related to egg quality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.