BackgroundType 2 diabetes mellitus (T2DM), with increased risk of serious long-term complications, currently represents 8.3% of the adult population. We hypothesized that a critical transition state prior to the new onset T2DM can be revealed through the longitudinal electronic medical record (EMR) analysis.MethodWe applied the transition-based network entropy methodology which previously identified a dynamic driver network (DDN) underlying the critical T2DM transition at the tissue molecular biological level. To profile pre-disease phenotypical changes that indicated a critical transition state, a cohort of 7,334 patients was assembled from the Maine State Health Information Exchange (HIE). These patients all had their first confirmative diagnosis of T2DM between January 1, 2013 and June 30, 2013. The cohort’s EMRs from the 24 months preceding their date of first T2DM diagnosis were extracted.ResultsAnalysis of these patients’ pre-disease clinical history identified a dynamic driver network (DDN) and an associated critical transition state six months prior to their first confirmative T2DM state.ConclusionsThis 6-month window before the disease state provides an early warning of the impending T2DM, warranting an opportunity to apply proactive interventions to prevent or delay the new onset of T2DM.
Accurate identification of critical nodes and regions in a power grid is a precondition and guarantee for safety assessment and situational awareness. Existing methods have achieved effective static identification based on the inherent topological and electrical characteristics of the grid. However, they ignore the variations of these critical nodes and regions over time and are not appropriate for online monitoring. To solve this problem, a novel data-driven dynamic identification scheme is proposed in this paper. Three temporal and three spatial attributes are extracted from their corresponding voltage phasor sequences and integrated via Gini-coefficient and Spearman correlation coefficient to form node importance and relevance assessment indices. Critical nodes and regions can be identified dynamically through importance ranking and clustering on the basis of these two indices. The validity and applicability of the proposed method pass the test on various situations of the IEEE-39 benchmark system, showing that this method can identify the critical nodes and regions, locate the potential disturbance source accurately, and depict the variation of node/region criticality dynamically.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.