Carbon dots (CDs) with excellent cytocompatibility, tunable optical properties, and simple synthesis routes are highly desirable for use in optical bioimaging. However, the majority of existing CDs are triggered by ultraviolet/blue light, presenting emissions in the visible/first near‐infrared (NIR‐I) regions, which do not allow deep tissue penetration. Emerging research into CDs with NIR‐II emission in the red region has generated limited designs with poor quantum yield, restricting their in vivo imaging applications due to low penetration depth. Developing novel CDs with NIR‐II emissions and high quantum yield has significant and far‐reaching applications in bioimaging and photodynamic therapy. Here, it is developed for the first time Fe‐doped CDs (Fe‐CDs) exhibiting the excellent linear relationship between 900–1200 nm fluorescence‐emission and pH values, and high quantum yield (QY‐1.27%), which can be used as effective probes for in vivo NIR‐II bioimaging. These findings demonstrate reliable imaging accuracy in tissue as deep as 4 mm, reflecting real‐time pH changes comparable to a standard pH electrode. As an important example application, the Fe‐CDs probe can non‐invasively monitor in vivo gastric pH changes during the digestion process in mice, illustrating its potential applications in aiding imaging‐guided diagnosis of gastric diseases or therapeutic delivery.
Gold- or carbon-based photothermal therapy (PTT) agents have shown encouraging therapeutic effects of PTT in the near-infrared region (NIR) in many preclinical animal experiments. It is expected that gold/carbon hybrid nanomaterial will possess combinational NIR light absorption and can achieve further improvement in photothermal conversion efficiency. In this work, we design and construct a novel PTT agent by coating a carbon nanosphere with patchy gold. To synthesize this composite particle with Janus structure, a new versatile approach based on a facile adsorption-reduction method was presented. Different from the conventional fabrication procedures, the formation of patchy gold in this approach is mainly a thermodynamics-driven spontaneous process. The results show that when compared with the conventional PTT agent gold nanorod the obtained nanocomposites not only have higher photothermal conversion efficiency but also perform more thermally stable. On the basis of these outstanding photothermal effects, the in vitro and in vivo photothermal performances in a MCF-7 cells (human breast adenocarcinoma cell line) and mice were investigated separately. Additionally, to further illustrate the advantage of this asymmetric structure, their potential was explored by selective surface functionalization, taking advantage of the affinity of both patchy gold and carbon domain to different functional molecules. These results suggest that this new hybrid nanomaterial can be used as an effective PTT agent for cancer treatment in the future.
Butyrylcholinesterase (BChE) is an essential human biomarker which related to liver and neurodegenerative diseases, it is of great significance to develop a fluorescent probe that can image BChE in vitro...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.