Abstract. Securing browsers in mobile devices is very challenging, because these browser apps usually provide browsing services to other apps in the same device. A malicious app installed in a device can potentially obtain sensitive information through a browser app. In this paper, we identify four types of attacks in Android, collectively known as FileCross, that exploits the vulnerable file:// to obtain users' private files, such as cookies, bookmarks, and browsing histories. We design an automated system to dynamically test 115 browser apps collected from Google Play and find that 64 of them are vulnerable to the attacks. Among them are the popular Firefox, Baidu and Maxthon browsers, and the more application-specific ones, including UC Browser HD for tablet users, Wikipedia Browser, and Kids Safe Browser. A detailed analysis of these browsers further shows that 26 browsers (23%) expose their browsing interfaces unintentionally. In response to our reports, the developers concerned promptly patched their browsers by forbidding file:// access to private file zones, disabling JavaScript execution in file:// URLs, or even blocking external file:// URLs. We employ the same system to validate the ten patches received from the developers and find one still failing to block the vulnerability.
Android has been the most popular smartphone system, with multiple platform versions (e.g., KITKAT and Lollipop) active in the market. To manage the application's compatibility with one or more platform versions, Android allows apps to declare the supported platform SDK versions in their manifest files. In this paper, we make a first effort to study this modern software mechanism. Our objective is to measure the current practice of the declared SDK versions (which we term as DSDK versions afterwards) in real apps, and the consistency between the DSDK versions and their app API calls. To this end, we perform a threedimensional analysis. First, we parse Android documents to obtain a mapping between each API and their corresponding platform versions. We then analyze the DSDK-API consistency for over 24K apps, among which we pre-exclude 1.3K apps that provide different app binaries for different Android versions through Google Play analysis. Besides shedding light on the current DSDK practice, our study quantitatively measures the two side effects of inappropriate DSDK versions: (i) around 1.8K apps have API calls that do not exist in some declared SDK versions, which causes runtime crash bugs on those platform versions; (ii) over 400 apps, due to claiming the outdated targeted DSDK versions, are potentially exploitable by remote code execution. These results indicate the importance and difficulty of declaring correct DSDK, and our work can help developers fulfill this goal.Recent years have witnessed the extraordinary success of Android, a smartphone operating system owned by Google. At the end of 2013, Android became the most sold phone and tablet OS. As of 2015, Android evolved into the largest installed base of all operating systems. Along with the fast-evolving Android, its fragmentation problem becomes more and more serious. Although new devices ship with the recent Android versions, there are still huge amounts of existing devices running old Android versions [1].To better manage the application's compatibility with multiple platform versions, Android allows apps to declare the supported platform SDK versions in their manifest files. We term these declared SDK versions as DSDK versions.These two author names are in alphabetical order.
Open TCP/UDP ports are traditionally used by servers to provide application services, but they are also found in many Android apps. In this paper, we present the first openport analysis pipeline, covering the discovery, diagnosis, and security assessment, to systematically understand open ports in Android apps and their threats. We design and deploy a novel ondevice crowdsourcing app and its server-side analytic engine to continuously monitor open ports in the wild. Over a period of ten months, we have collected over 40 million port monitoring records from 3,293 users in 136 countries worldwide, which allow us to observe the actual execution of open ports in 925 popular apps and 725 built-in system apps. The crowdsourcing also provides us a more accurate view of the pervasiveness of open ports in Android apps at 15.3%, much higher than the previous estimation of 6.8%. We also develop a new static diagnostic tool to reveal that 61.8% of the open-port apps are solely due to embedded SDKs, and 20.7% suffer from insecure API usages. Finally, we perform three security assessments of open ports: (i) vulnerability analysis revealing five vulnerability patterns in open ports of popular apps, e.g., Instagram, Samsung Gear, Skype, and the widely-embedded Facebook SDK, (ii) inter-device connectivity measurement in 224 cellular networks and 2,181 WiFi networks through crowdsourced network scans, and (iii) experimental demonstration of effective denial-of-service attacks against mobile open ports.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.