Around 20 % of world population lives without electricity access, most of them are concentrated in Sub-Saharan rural areas. Traditional approaches to electrify rural areas imply capital intensive infrastructures and large investments, while DC microgrids, based on renewable sources and storage systems, can be easily implementable and lead to cost effective solutions. The use of super efficient appliances can dramatically reduce the households electricity consumption, leading to smaller and cheaper systems. In this study an analysis of the use of efficient DC appliances is performed starting by essential energy services. Solar home system design optimization can be achieved by the evaluation of irradiation variation and the load requirements, finding the most cost-effective solution. Rural electrification can have a major impact to drastically improve the quality of life of millions of people through the sustainable use of solar energy.
In this paper, a novel high-gain DC-DC boost converter with reduced component count is proposed. The converter that is proposed in this paper provides high DC voltage gain, while keeping the overall component count significantly lower in comparison to some similar high voltage gain DC-DC converters presented recently. The proposed converter uses only one power switch, two inductors, two capacitors, and three didoes to achieve high-voltage gain, without a significant compromise on the efficiency. In addition, the proposed design uses small passive component sizes compared to other similar designs of the same power rating. Due to the reduced component count, and hence the small physical size, the proposed converter will find applications in several practical domains, ranging from industrial control embedded systems to the DC transmission bus bars in fully electrical vehicles and renewable energy distribution grids. A 250 Watts prototype of this newly proposed DC-DC boost converter was implemented and simulated using the PSIM simulation tool. The promising simulation results proved the reliable performance of the proposed DC-DC boost converter design.
Population aging and pandemics have been shown to cause the isolation of elderly people in their houses, generating the need for a reliable assistive figure. Robotic assistants are the new frontier of innovation for domestic welfare, and elderly monitoring is one of the services a robot can handle for collective well-being. Despite these emerging needs, in the actual landscape of robotic assistants, there are no platforms that successfully combine reliable mobility in cluttered domestic spaces with lightweight and offline Artificial Intelligence (AI) solutions for perception and interaction. In this work, we present Marvin, a novel assistive robotic platform we developed with a modular layer-based architecture, merging a flexible mechanical design with cutting-edge AI for perception and vocal control. We focus the design of Marvin on three target service functions: monitoring of elderly and reduced-mobility subjects, remote presence and connectivity, and night assistance. Compared to previous works, we propose a tiny omnidirectional platform, which enables agile mobility and effective obstacle avoidance. Moreover, we design a controllable positioning device, which easily allows the user to access the interface for connectivity and extends the visual range of the camera sensor. Nonetheless, we delicately consider the privacy issues arising from private data collection on cloud services, a critical aspect of commercial AI-based assistants. To this end, we demonstrate how lightweight deep learning solutions for visual perception and vocal command can be adopted, completely running offline on the embedded hardware of the robot.
In this paper, a novel mobile platform for assistive robotics tasks is presented. The machine is designed for working in a home environment, un-structured and possibly occupied by people. To work in this space, the platform must be able to get rid of all the consequent difficulties: to overpass small objects as steps and carpets, to operate with an as-high-as-possible dynamics, to avoid moving obstacles, and to navigate autonomously to track persons for person monitoring purposes. The proposed platform is designed to have an omni-directional mobility that improves the manoeuvrability with respect to state-of-the-art differential drive robots. It also will have a non-axisymmetric shape to easily navigate narrow spaces, and real-time edge computing algorithms for navigation. This work shows the design paradigm adopted for the realization of a novel mobile robot, named Paquitop. For a robust output, the design process used a modular approach which disjointed the several sub-systems which compose the machine. After a brief analysis of the expected features, a set of basic requirements are drawn to guide the functional and executive design. The overall architecture of the platform is presented, together with some details on the mechanical and electrical systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.