Marine microplastics (MPs) are exposed to environmental factors, which produce aging, weathering, surface cracking, yellowing, fragmentation and degradation, thereby changing the structure and behavior of the plastic. This degradation also has an influence on the adsorption of persistent organic pollutants over the microplastic surface, leading to increased concentration with aging. The degradation state affects the microplastic color over time; this is called yellowing, which can be quantified using the Yellowness Index (YI). Weathering and surface cracking is also related with the microplastic yellowing, which can be identified by Fourier transform infrared spectroscopy (FTIR). In this study, the degradation state of marine microplastic polyethylene pellets with different aging stages is evaluated and quantified with YI determination and the analysis of FTIR spectrums. A color palette, which relates to the microplastic color and YI, was developed to obtain a visual percentage of this index. The relation with the adsorption rate of persistent organic pollutant over the microplastic surface was also determined.
Solid-phase microextraction (SPME) coupled with high-performance liquid chromatography (HPLC) with fluorescence detection was optimized for extraction and determination of four benzimidazole fungicides (benomyl, carbendazim, thiabendazole, and fuberidazole) in water. We studied extraction and desorption conditions, for example fiber type, extraction time, ionic strength, extraction temperature, and desorption time to achieve the maximum efficiency in the extraction. Results indicate that SPME using a Carboxen-polydimethylsiloxane 75 microm (CAR-PDMS) fiber is suitable for extraction of these types of compound. Final analysis of benzimidazole fungicides was performed by HPLC with fluorescence detection. Recoveries ranged from 80.6 to 119.6 with RSDs below 9% and limits of detection between 0.03 and 1.30 ng mL-1 for the different analytes. The optimized procedure was applied successfully to the determination of benzimidazole fungicides mixtures in environmental water samples (sea, sewage, and ground water).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.