photovoltaic technology, where lifetimes greater than 25 years are required. [2] Although the issue of device stability has attracted increased attention of the photovoltaic research community in the last two years, reports that systematically study the fundamental causes (e.g., heat, electrical stress, humidity, oxygen, (UV) light, chemical precursors, processing conditions, influence of film quality and morphology) and mechanisms limiting the material and device stability remain scarce. [2][3][4][5] While the degradation of methylammonium lead iodide (MAPbI 3 ) in humid air has been studied experimentally as well as theoretically and was long thought to be the main factor for material degradation in ambient environment, [6][7][8][9][10][11][12][13][14][15] studies exploring the influence of oxygen and light on the solar cell performance have only recently been reported. [16][17][18][19][20] It has been shown that photoexcited electrons in the perovskite layer can form superoxide (O 2 − ) via electron transfer to molecular oxygen, which through deprotonation of the methylammonium cation in turn results in irreversible material degradation. The severity of the degradation has been linked to the efficiency of electron extraction via the electron extracting layer (EEL): devices employing a compact-TiO 2 /mesoporous Al 2 O 3 or compact-TiO 2 as EELs degraded in dry air on a timescale of less than 1 h, while with the use of a mesoporous TiO 2 layer, an EEL which results in faster electron extraction, the lifetimes were significantly increased. However, in these reports only the degradation of complete photovoltaic device was reported, with limited information on the degradation of the perovskite active layer itself and the impact of its microstructure was not identified.In this work, we systematically study the degradation of MAPbI 3 films under precisely controlled exposure to various oxygen levels (0-20%) under simulated sunlight in order to shed light on the progression of perovskite degradation under these conditions. We investigate two types of perovskite layers that are formed using different fabrication methods. The two recipes allow us to include the effect of layer microstructure on the dynamics of oxygen-induced degradation. We characterize the electronic, optical, compositional, and structural properties of the degraded perovskite films and correlate these results This paper investigates the impact of microstructure on the degradation rate of methylammonium lead triiodide (MAPbI 3 ) perovskite films upon exposure to light and oxygen. By comparing the oxygen induced degradation of perovskite films of different microstructure-fabricated using either a lead acetate trihydrate precursor or a solvent engineering technique-it is demonstrated that films with larger and more uniform grains and better electronic quality show a significantly reduced degradation compared to films with smaller, more irregular grains. The effect of degradation on the optical, compositional, and microstructural properties of the perovsk...
Metal-halide perovskite semiconductors are of tremendous interest for a variety of applications. Only recently, solar cells based on a representative of this family have been certified with an efficiency in excess of 24%.[1] Aside from their remarkable success in photovoltaics, metal-halide perovskites are also highly promising as light emitters, e.g., in light-emitting diodes (LEDs) or lasers. [2][3][4] LEDs based on the fruit-fly of these compounds, i.e., methylammonium lead iodide (CH 3 NH 3 PbI 3 or MAPbI 3 ), and other related perovskites have been demonstrated with continuously increasing efficiency. [5][6][7] For lasers, there is the vision that perovskites may overcome/avoid the typical limitations and loss mechanisms present in organic gain media, such as triplet-singlet annihilation or absorption due to triplet excitons and Cesium lead halide perovskites are of interest for light-emitting diodes and lasers. So far, thin-films of CsPbX 3 have typically afforded very low photoluminescence quantum yields (PL-QY < 20%) and amplified spontaneous emission (ASE) only at cryogenic temperatures, as defect related nonradiative recombination dominated at room temperature (RT). There is a current belief that, for efficient light emission from lead halide perovskites at RT, the charge carriers/excitons need to be confined on the nanometer scale, like in CsPbX 3 nanoparticles (NPs).Here, thin films of cesium lead bromide, which show a high PL-QY of 68% and low-threshold ASE at RT, are presented. As-deposited layers are recrystallized by thermal imprint, which results in continuous films (100% coverage of the substrate), composed of large crystals with micrometer lateral extension. Using these layers, the first cesium lead bromide thin-film distributed feedback and vertical cavity surface emitting lasers with ultralow threshold at RT that do not rely on the use of NPs are demonstrated. It is foreseen that these results will have a broader impact beyond perovskite lasers and will advise a revision of the paradigm that efficient light emission from CsPbX 3 perovskites can only be achieved with NPs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.