Institutions of higher education adopted different approaches for the fall semester 2020 in response to the coronavirus disease 2019 pandemic. Approximately 45% of colleges and universities implemented online instruction, more than one fourth (27%) provided in-person instruction, and 21% used a hybrid model (1). Although CDC has published COVID-19 guidance for institutions of higher education (2-4), little has been published regarding the response to COVID-19 outbreaks on college and university campuses (5). In August 2020, an Indiana university with approximately 12,000 students (including 8,000 undergraduate students, 85% of whom lived on campus) implemented various public health measures to reduce transmission of SARS-CoV-2, the virus that causes COVID-19. Despite these measures, the university experienced an outbreak involving 371 cases during the first few weeks of the fall semester. The majority of cases occurred among undergraduate students living off campus, and several large off-campus gatherings were identified as common sources of exposure. Rather than sending students home, the university switched from in-person to online instruction for undergraduate students and instituted a series of campus restrictions for 2 weeks, during which testing, contact tracing, and isolation and quarantine programs were substantially enhanced, along with educational efforts highlighting the need for strict adherence to the mitigation measures. After 2 weeks, the university implemented a phased return to in-person instruction (with 85% of classes offered in person) and resumption of student life activities. This report describes the outbreak and the data-driven, targeted interventions and rapid escalation of testing, tracing, and isolation measures that enabled the medium-sized university to resume in-person instruction and campus activities. These strategies might prove useful to other colleges and universities responding to campus outbreaks. * Students received an at-home nasal self-swabbing kit by express delivery, with a return mailer for the testing facility of a national commercial laboratory, where RT-PCR tests were performed, with results transmitted to the student and to University Health Services. † Protection of Human Subjects, 45 C.F.R. part 46.
The ATLAS liquid argon calorimeter has been operating continuously since August 2006. At this time, only part of the calorimeter was readout, but since the beginning of 2008, all calorimeter cells have been connected to the ATLAS readout system in preparation for LHC collisions. This paper gives an overview of the liquid argon calorimeter performance measured in situ with random triggers, calibration data, cosmic muons, and LHC beam splash events. Results on the detector operation, timing perfore-mail: atlas.secretariat@cern.ch mance, electronics noise, and gain stability are presented. High energy deposits from radiative cosmic muons and beam splash events allow to check the intrinsic constant term of the energy resolution. The uniformity of the electromagnetic barrel calorimeter response along η (averaged over φ) is measured at the percent level using minimum ionizing cosmic muons. Finally, studies of electromagnetic showers from radiative muons have been used to cross-check the Monte Carlo simulation. The performance results obtained using the ATLAS readout, data acquisition, and reconstruction software indicate that the liquid argon calorimeter is well-prepared for collisions at the dawn of the LHC era.
The ionization signals in the liquid argon of the ATLAS electromagnetic calorimeter are studied in detail using cosmic muons. In particular, the drift time of the ionization electrons is measured and used to assess the intrinsic uniformity of the calorimeter gaps and estimate its impact on the constant term of the energy resolution. The drift times of electrons in the cells of the second layer of the calorimeter are uniform at the level of 1.3% in the barrel and 2.8% in the endcaps. This leads to an estimated contribution to the constant term of (0.29 +0.05 −0.04
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.