This paper presents a road distress detection system involving the phases needed to properly deal with fully automatic road distress assessment. A vehicle equipped with line scan cameras, laser illumination and acquisition HW-SW is used to storage the digital images that will be further processed to identify road cracks. Pre-processing is firstly carried out to both smooth the texture and enhance the linear features. Non-crack features detection is then applied to mask areas of the images with joints, sealed cracks and white painting, that usually generate false positive cracking. A seed-based approach is proposed to deal with road crack detection, combining Multiple Directional Non-Minimum Suppression (MDNMS) with a symmetry check. Seeds are linked by computing the paths with the lowest cost that meet the symmetry restrictions. The whole detection process involves the use of several parameters. A correct setting becomes essential to get optimal results without manual intervention. A fully automatic approach by means of a linear SVM-based classifier ensemble able to distinguish between up to 10 different types of pavement that appear in the Spanish roads is proposed. The optimal feature vector includes different texture-based features. The parameters are then tuned depending on the output provided by the classifier. Regarding non-crack features detection, results show that the introduction of such module reduces the impact of false positives due to non-crack features up to a factor of 2. In addition, the observed performance of the crack detection system is significantly boosted by adapting the parameters to the type of pavement.
There is clear evidence that investment in intelligent transportation system technologies brings major social and economic benefits. Technological advances in the area of automatic systems in particular are becoming vital for the reduction of road deaths. We here describe our approach to automation of one the riskiest autonomous manoeuvres involving vehicles -overtaking. The approach is based on a stereo vision system responsible for detecting any preceding vehicle and triggering the autonomous overtaking manoeuvre. To this end, a fuzzy-logic based controller was developed to emulate how humans overtake. Its input is information from the vision system and from a positioning-based system consisting of a differential global positioning system (DGPS) and an inertial measurement unit (IMU). Its output is the generation of action on the vehicle's actuators, i.e., the steering wheel and throttle and brake pedals. The system has been incorporated into a commercial Citroen car and tested on the private driving circuit at the facilities of our research center, CAR, with different preceding vehicles -a motorbike, car, and truck -with encouraging results.
Abstract-This paper presents a novel pedestrian detection system for intelligent vehicles. We propose the use of dense stereo for both the generation of regions of interest and pedestrian classification. Dense stereo allows the dynamic estimation of camera parameters and the road profile, which, in turn, provides strong scene constraints on possible pedestrian locations. For classification, we extract spatial features (gradient orientation histograms) directly from dense depth and intensity images. Both modalities are represented in terms of individual feature spaces, in which discriminative classifiers (linear support vector machines) are learned. We refrain from the construction of a joint feature space but instead employ a fusion of depth and intensity on the classifier level. Our experiments involve challenging image data captured in complex urban environments (i.e., undulating roads and speed bumps). Our results show a performance improvement by up to a factor of 7.5 at the classification level and up to a factor of 5 at the tracking level (reduction in false alarms at constant detection rates) over a system with static scene constraints and intensity-only classification.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.