Satellite Interferometric Synthetic Aperture Radar (InSAR), geological data and Small Unmanned Aerial Vehicle (SUAV) surveying was used to enhance our understanding of ground movement at five areas of interest in Northern Ireland. In total 68 ERS-1/2 images 1992-2000 were processed with the Small Baseline Subset (SBAS) InSAR technique to derive the baseline ground instability scenario of key areas of interest for five stakeholders: TransportNI, Northern Ireland Railways, Department for the Economy, Arup, and Belfast City Council. These stakeholders require monitoring of ground deformation across either their geotechnical infrastructure (i.e., embankments, cuttings, engineered fills and earth retaining structures) or assessment of subsidence risk as a result of abandoned mine workings, using the most efficient, cost-effective methods, with a view to minimising and managing risk to their businesses. The InSAR results provided an overview of the extent and magnitude of ground deformation for a 3000 km 2 region, including the key sites of the disused salt mines in Carrickfergus, the Belfast-Bangor railway line, Throne Bend and Ligoniel Park in Belfast, Straidkilly and Garron Point along the Antrim Coast Road, plus other urbanised areas in and around Belfast. Tailored SUAV campaigns with a X8 airframe and generation of very high resolution ortho-photographs and a 3D surface model via the Structure from Motion (SfM) approach at Maiden Mount salt mine collapse in Carrickfergus in 2016 and 2017 also demonstrate the benefits of very high resolution surveying technologies to detect localised deformation and indicators of ground instability.
Vibro-stone columns can improve the bearing capacity and reduce the settlement of foundations. Their performance depends on the strength of the column material, reinforcement method of column installation, type of in situ soil, area replacement ratio, and column length. This paper examines the behaviour of small laboratory specimens of soft clay (undrained shear strength ≈ 30 kPa) reinforced with sand columns when tested under known boundary stress conditions. Two series of tests were carried out on kaolin specimens (diameter 100 mm, height 200 mm) in a triaxial cell. In the first series, specimens were reinforced with a 32 mm diameter column of sand, 80, 120, 160, or 200 mm long. Columns were installed by (i) compacting moist sand into a prebored hole or (ii) freezing a column of moist sand before inserting it into a prebored hole. In the second series, columns were reinforced with geo-grids before installation. The specimens were subjected to (i) uniform loading in which the load was applied over the entire surface area of the specimen or (ii) foundation-type loading in which only a small area in the centre of the specimen was loaded. Under uniform loading, the specimens containing a full-depth column were significantly stronger than specimens without columns. Specimens with single, partially penetrating columns installed by wet compaction were weaker than specimens without columns. When frozen columns were installed, strengths increased progressively. Under foundation-type loading, bearing capacities increased with an increase in column length. Geo-grid reinforcement produced significant increases in load-carrying capacity.Key words: ground improvement, undrained shear strength, consolidation, stress path.
This paper examines the performance of unsaturated soils under repeated loading. As part of the research, a triaxial system was developed that incorporates small-strain measurements using Hall effect transducers, in addition to suction measurements taken using a psychrometer. Tests were conducted on samples of kaolin under constant water mass conditions. The results address the effects of compaction effort and water content at the time of compaction on the overall performance of unsaturated soils, under different amplitudes of loading and different confining pressures. The results show that suction in the sample reduced with increasing number of loading cycles of the same magnitude. The resilient modulus initially increased with increasing water content up to approximately optimum water content, and then reduced substantially with further increase in water content.
This paper develops an improved and accessible framework for modelling time-dependent behaviour of soils using the concepts of elasticity and viscoplasticity. The mathematical description of viscoplastic straining is formulated based on a purely viscoplastic and measurable phenomenon, namely creep. The resulting expression for the viscoplastic strain rates includes a measure of both effective stress and the corresponding volumetric packing of the soil particles. In this way, the model differs from some earlier viscoplastic models and arguably provides a better conceptual description of time-dependent behaviour. Analytical solutions are developed for the simulation of drained and undrained strain-controlled triaxial compression tests. The model is then used to back-analyze the measured response of normally consolidated to moderately overconsolidated specimens of a soft estuarine soil in undrained triaxial compression. The model captures aspects of soil behaviour that cannot be simulated using time-independent elastic–plastic models. Specifically, it can capture the dependence of stress–strain relationships and undrained shear strength on strain rate, the development of irrecoverable plastic strains at constant stress (creep), and the relaxation of stresses at constant strain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.