After transendothelial cell migration, neutrophils actively crawl along pericyte processes before exiting the venular wall via selected gaps between adjacent pericytes.
Localized surface plasmon resonances (LSPRs) enable tailoring of the optical response of nanomaterials through their free carrier concentration, morphology, and dielectric environment. Recent efforts to expand the spectral range of usable LSPR frequencies into the infrared successfully demonstrated LSPRs in doped semiconductor nanocrystals. Despite silicon's importance for electronic and photonic applications, no LSPRs have been reported for doped silicon nanocrystals. Here we demonstrate doped silicon nanocrystals synthesized via a nonthermal plasma technique that exhibits tunable LSPRs in the energy range of 0.07-0.3 eV or mid-infrared wavenumbers of 600-2500 cm(-1).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.