The authors present a method, based on the Kelvin polarization force, to actuate nonconductive polymer microstructures. A proof of principle was conducted by finite element simulations. Microresonators made of SU-8 were fabricated and characterized under resonant conditions at applied ac voltage of 5Vpp. A quality factor of Q=87 in vacuum and a square dependence of the force on the applied voltage were obtained. The presented actuator design and fabrication do not require additional electrodes on the movable structure for actuation and thus allow for the full exploration of the exceptional variety of polymer materials for microscaled actuators and sensors.
Initiation of DNA replication from the Escherichia coli origin, oriC, is dependent on an RNA polymerase-mediated transcription event. The function of this RNA synthetic event in initiation, however, remains obscure. Since control of the synthesis of this RNA could serve a key role in the overall initiation process, transcription regulatory sites within and near oriC were identified using the galK fusion vector system. Our results confirm the existence of a transcription termination signal within oriC, first identified by Hansen et al. (1981), for the 16 kd transcript that is transcribed counterclockwise towards oriC. Termination is shown to be 92% efficient. A similar approach led to the detection of transcription termination within the chromosomal replication origin of Klebsiella pneumoniae. Approximately 50% of the E. coli 16 kd transcripts appear to terminate before reaching oriC between the XhoI (+416 bp) and the HindIII (+243 bp) sites. The predominant 3' ends of RNA that enter oriC, as determined by SI nuclease mapping, were located at positions +20 +/- 2, +23 +/- 2, +37, +39, +52, +66, +92, and +107. These termination sites, which map cl to RNA . DNA junctions identified by Kohara et al. (1985), appear as triplets and quadruplets. The E. coli oriC Pori-L promoter described in in vitro transcription studies by Lother and Messer (1981) was not detected in this study in either wildtype cells or isogenic dnaA mutants at the nonpermissive temperature. A new promoter activity, Pori-R1, was identified within the E. coli origin in the clockwise direction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.