Abstract-This research presented a bench-scale investigation of an innovative approach to land farming for the bioremediation of 2,4,6-trinitrotoluene (TNT)-contaminated soils. Molasses, which contains sugar, nitrogen, vitamins, and minerals, was used as cosubstrate and this process combines several advantages of conventional land farming with the use of molasses for the biological degradation of TNT and its derivatives. In the optimum treatment, contaminated soil was amended with shredded grass and managed in an operating cycle where it was alternatively flooded with a dilute molasses solution, then drained, passively aerated, and finally tilled when moisture conditions were optimum. Soil TNT concentrations in all treatments receiving molasses were reduced from approximately 4,000-mg/kg levels initially to less than 100 mg/kg in 12 months, and to less than 1 mg/kg in the optimum treatment in this same time. Concentrations of the primary metabolic intermediates and bacterial populations were also tracked. Radiolabeling studies confirmed that the biomass enhanced by the treatments could mineralize approximately 20% of [ 14 C] from a contaminant spike after 22 d. A shredded grass amendment in the optimum treatment was shown to increase moisture retention during aeration phases. The results of this bench-scale study are promising with regard to transferring the process to full-scale applications.
This research presented a bench-scale investigation of an innovative approach to land farming for the bioremediation of 2,4,6-trinitrotoluene (TNT)-contaminated soils. Molasses, which contains sugar, nitrogen, vitamins, and minerals, was used as cosubstrate and this process combines several advantages of conventional land farming with the use of molasses for the biological degradation of TNT and its derivatives. In the optimum treatment, contaminated soil was amended with shredded grass and managed in an operating cycle where it was alternatively flooded with a dilute molasses solution, then drained, passively aerated, and finally tilled when moisture conditions were optimum. Soil TNT concentrations in all treatments receiving molasses were reduced from approximately 4,000-mg/kg levels initially to less than 100 mg/kg in 12 months, and to less than 1 mg/kg in the optimum treatment in this same time. Concentrations of the primary metabolic intermediates and bacterial populations were also tracked. Radiolabeling studies confirmed that the biomass enhanced by the treatments could mineralize approximately 20% of [ 14 C] from a contaminant spike after 22 d. A shredded grass amendment in the optimum treatment was shown to increase moisture retention during aeration phases. The results of this bench-scale study are promising with regard to transferring the process to full-scale applications.
Packed soil columns were used to simulate and investigate in situ biological remediation of soil contaminated with diesel fuel. We investigated and evaluated several operating strategies, including continuous flooding of the column soil with nutrient solution, and periodic operating cycles consisting of flooding followed by draining and aeration. The objectives were (a) to determine the extent of diesel fuel degradation in soil columns under four operating conditions (biologically inhibited control; continuous saturation with nitrogen and phosphorus amendments; periodic operation, consisting of flooding with nitrogen and phosphorus, followed by draining and forced aeration; and periodic operation, consisting of flooding with nitrogen, phosphorus, and calcium and magnesium amendments, followed by draining and forced aeration); (b) to evaluate CO2 production and oxygen consumption as indicators of biodegradation; (c) to monitor hydraulic conductivity under different operating strategies; and (d) to examine the system requirements for nitrogen and phosphorus. Our results showed that periodic operation promoted higher rates of biodegradation of diesel fuel in soil and minimized the use of water containing nutrient amendments, and consequently the possible need to collect and treat such water. We believe that monitoring CO2 and O2 levels in situ may provide a means of optimizing the timing of flooding and aeration events to increase degradation rates. Results of this laboratory study will aid in improving the design and operation of field‐scale bioremediation systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.