Despite their limited spatial extent, freshwater ecosystems host remarkable biodiversity, including one-third of all vertebrate species. This biodiversity is declining dramatically: Globally, wetlands are vanishing three times faster than forests, and freshwater vertebrate populations have fallen more than twice as steeply as terrestrial or marine populations. Threats to freshwater biodiversity are well documented but coordinated action to reverse the decline is lacking. We present an Emergency Recovery Plan to bend the curve of freshwater biodiversity loss. Priority actions include accelerating implementation of environmental flows; improving water quality; protecting and restoring critical habitats; managing the exploitation of freshwater ecosystem resources, especially species and riverine aggregates; preventing and controlling nonnative species invasions; and safeguarding and restoring river connectivity. We recommend adjustments to targets and indicators for the Convention on Biological Diversity and the Sustainable Development Goals and roles for national and international state and nonstate actors.
Extensive ecosystem restoration is increasingly seen as being central to conserving biodiversity 1 and stabilizing the climate of the Earth 2 . Although ambitious national and global targets have been set, global priority areas that account for spatial variation in benefits and costs have yet to be identified. Here we develop and apply a multicriteria optimization approach that identifies priority areas for restoration across all terrestrial biomes, and estimates their benefits and costs. We find that restoring 15% of converted lands in priority areas could avoid 60% of expected extinctions while sequestering 299 gigatonnes of CO 2 -30% of the total CO 2 increase in the atmosphere since the Industrial Revolution. The inclusion of several biomes is key to achieving multiple benefits. Cost effectiveness can increase up to 13-fold when spatial allocation is optimized using our multicriteria approach, which highlights the importance of spatial planning. Our results confirm the vast potential contributions of restoration to addressing global challenges, while underscoring the necessity of pursuing these goals synergistically.
Bending the curve of terrestrial biodiversity needs an integrated strategy Summary paragraph Increased efforts are required to prevent further losses of terrestrial biodiversity and the ecosystem services it provides 1,2. Ambitious targets have been proposed, such as reversing the declining trends in biodiversity 3-yet, just feeding the growing human population will make this a challenge 4. We use an ensemble of land-use and biodiversity models to assess whether (and if so, how) humanity can reverse terrestrial biodiversity declines due to habitat conversion, a major threat to biodiversity 5. We show that immediate efforts, consistent with the broader sustainability agenda but of unprecedented ambition and coordination, may allow to feed the growing human population while reversing global terrestrial biodiversity trends from habitat conversion. If we decide to increase the extent of land under conservation management, restore degraded land, and generalize landscapelevel conservation planning, biodiversity trends from habitat conversion could become positive by mid-century on average across models (confidence interval: 2042-2061), but not for all models. Food prices could increase and, on average across models, almost half (confidence interval: 34-50%) of future biodiversity losses could not be avoided. However, additionally tackling the drivers of landuse change may avoid conflict with affordable food provision and reduces the food system's environmental impacts. Through further sustainable intensification and trade, reduced food waste, and healthier human diets, more than two thirds of future biodiversity losses are avoided and the biodiversity trends from habitat conversion are reversed by 2050 for almost all models. Although limiting further loss will remain challenging in several biodiversity-rich regions, and other threats, such as climate change, must be addressed to truly reverse biodiversity declines, our results show that bold conservation efforts and food system transformation are central to an effective post-2020 biodiversity strategy. Reversing biodiversity trends by 2050 Without further efforts to counteract habitat loss and degradation, we projected that global biodiversity will continue to decline (BASE scenario; Fig. 1). Rates of loss over time for all nine BDIs in 2010-2050 were close to or greater than those estimated for 1970-2010 (Extended data Extended Data Table 1). For various biodiversity aspects, on average across IAM and BDI combinations, peak losses over the 2010-2100 period were: 13% (range: 1-26%) for the extent of suitable habitat, 54% (range: 45-63%) for wildlife population density, 5% (range: 2-9%) for local compositional intactness , 4% (range: 1-12%) for global extinctions, and 4% (range: 2-8%) for regional extinctions (Extended Data Table 1). Percentage losses were greatest in biodiversity-rich regions (Sub-Saharan Africa, South Asia, South East Asia, the Caribbean and Latin America; Extended Data Fig. 2). The projected future trends for habitat loss and degradation and its driv...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.