Abstract-SpiNNaker (a contraction of Spiking Neural Network Architecture) is a million-core computing engine whose flagship goal is to be able to simulate the behaviour of aggregates of up to a billion neurons in real time. It consists of an array of ARM9 cores, communicating via packets carried by a custom interconnect fabric. The packets are small (40 or 72 bits), and their transmission is brokered entirely by hardware, giving the overall engine an extremely high bisection bandwidth of over 5 billion packets/s. Three of the principle axioms of parallel machine design -memory coherence, synchronicity and determinismhave been discarded in the design without, surprisingly, compromising the ability to perform meaningful computations. A further attribute of the system is the acknowledgment, from the initial design stages, that the sheer size of the implementation will make component failures an inevitable aspect of day-to-day operation, and fault detection and recovery mechanisms have been built into the system at many levels of abstraction. This paper describes the architecture of the machine and outlines the underlying design philosophy; software and applications are to be described in detail elsewhere, and only introduced in passing here as necessary to illuminate the description.
The modelling of large systems of spiking neurons is computationally very demanding in terms of processing power and communication. SpiNNaker-Spiking Neural Network architecture-is a massively parallel computer system designed to provide a cost-effective and flexible simulator for neuroscience experiments. It can model up to a billion neurons and a trillion synapses in biological real time. The basic building block is the SpiNNaker Chip Multiprocessor (CMP), which is a custom-designed globally asynchronous locally synchronous (GALS) system with 18 ARM968 processor nodes residing in synchronous islands, surrounded by a lightweight, packet-switched asynchronous communications infrastructure. In this paper, we review the design requirements for its very demanding target application, the SpiNNaker micro-architecture and its implementation issues. We also evaluate the SpiNNaker CMP, which contains 100 million transistors in a 102-mm die, provides a peak performance of 3.96 GIPS, and has a peak power consumption of 1 W when all processor cores operate at the nominal frequency of 180 MHz. SpiNNaker chips are fully operational and meet their power and performance requirements.Index Terms-Asynchronous interconnect, chip multiprocessor, energy efficiency, globally asynchronous locally synchronous (GALS), network-on-chip, neuromorphic hardware, real-time simulation, spiking neural networks (SNNs).
The digital neuromorphic hardware SpiNNaker has been developed with the aim of enabling large-scale neural network simulations in real time and with low power consumption. Real-time performance is achieved with 1 ms integration time steps, and thus applies to neural networks for which faster time scales of the dynamics can be neglected. By slowing down the simulation, shorter integration time steps and hence faster time scales, which are often biologically relevant, can be incorporated. We here describe the first full-scale simulations of a cortical microcircuit with biological time scales on SpiNNaker. Since about half the synapses onto the neurons arise within the microcircuit, larger cortical circuits have only moderately more synapses per neuron. Therefore, the full-scale microcircuit paves the way for simulating cortical circuits of arbitrary size. With approximately 80, 000 neurons and 0.3 billion synapses, this model is the largest simulated on SpiNNaker to date. The scale-up is enabled by recent developments in the SpiNNaker software stack that allow simulations to be spread across multiple boards. Comparison with simulations using the NEST software on a high-performance cluster shows that both simulators can reach a similar accuracy, despite the fixed-point arithmetic of SpiNNaker, demonstrating the usability of SpiNNaker for computational neuroscience applications with biological time scales and large network size. The runtime and power consumption are also assessed for both simulators on the example of the cortical microcircuit model. To obtain an accuracy similar to that of NEST with 0.1 ms time steps, SpiNNaker requires a slowdown factor of around 20 compared to real time. The runtime for NEST saturates around 3 times real time using hybrid parallelization with MPI and multi-threading. However, achieving this runtime comes at the cost of increased power and energy consumption. The lowest total energy consumption for NEST is reached at around 144 parallel threads and 4.6 times slowdown. At this setting, NEST and SpiNNaker have a comparable energy consumption per synaptic event. Our results widen the application domain of SpiNNaker and help guide its development, showing that further optimizations such as synapse-centric network representation are necessary to enable real-time simulation of large biological neural networks.
This work presents sPyNNaker 4.0.0, the latest version of the software package for simulating PyNN-defined spiking neural networks (SNNs) on the SpiNNaker neuromorphic platform. Operations underpinning realtime SNN execution are presented, including an event-based operating system facilitating efficient time-driven neuron state updates and pipelined event-driven spike processing. Preprocessing, realtime execution, and neuron/synapse model implementations are discussed, all in the context of a simple example SNN. Simulation results are demonstrated, together with performance profiling providing insights into how software interacts with the underlying hardware to achieve realtime execution. System performance is shown to be within a factor of 2 of the original design target of 10,000 synaptic events per millisecond, however SNN topology is shown to influence performance considerably. A cost model is therefore developed characterizing the effect of network connectivity and SNN partitioning. This model enables users to estimate SNN simulation performance, allows the SpiNNaker team to make predictions on the impact of performance improvements, and helps demonstrate the continued potential of the SpiNNaker neuromorphic hardware.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.