Abstract-Living organisms are capable of autonomously adapting to dynamically changing environments by receiving inputs from highly specialized sensory organs and elaborating them on the same parallel, power-efficient neural substrate. In this paper we present a prototype for a comprehensive integrated platform that allows replicating principles of neural information processing in real-time. Our system consists of (a) an autonomous mobile robotic platform, (b) on-board actuators and multiple (neuromorphic) sensors, and (c) the SpiNNaker computing system, a configurable neural architecture for exploration of parallel, brain-inspired models. The simulation of neurally inspired perception and reasoning algorithms is performed in real-time by distributed, low-power, low-latency event-driven computing nodes, which can be flexibly configured using C or specialized neural languages such as PyNN and Nengo. We conclude by demonstrating the platform in two experimental scenarios, exhibiting real-world closed loop behavior consisting of environmental perception, reasoning and execution of adequate motor actions.