Abstract-SpiNNaker (a contraction of Spiking Neural Network Architecture) is a million-core computing engine whose flagship goal is to be able to simulate the behaviour of aggregates of up to a billion neurons in real time. It consists of an array of ARM9 cores, communicating via packets carried by a custom interconnect fabric. The packets are small (40 or 72 bits), and their transmission is brokered entirely by hardware, giving the overall engine an extremely high bisection bandwidth of over 5 billion packets/s. Three of the principle axioms of parallel machine design -memory coherence, synchronicity and determinismhave been discarded in the design without, surprisingly, compromising the ability to perform meaningful computations. A further attribute of the system is the acknowledgment, from the initial design stages, that the sheer size of the implementation will make component failures an inevitable aspect of day-to-day operation, and fault detection and recovery mechanisms have been built into the system at many levels of abstraction. This paper describes the architecture of the machine and outlines the underlying design philosophy; software and applications are to be described in detail elsewhere, and only introduced in passing here as necessary to illuminate the description.
The modelling of large systems of spiking neurons is computationally very demanding in terms of processing power and communication. SpiNNaker-Spiking Neural Network architecture-is a massively parallel computer system designed to provide a cost-effective and flexible simulator for neuroscience experiments. It can model up to a billion neurons and a trillion synapses in biological real time. The basic building block is the SpiNNaker Chip Multiprocessor (CMP), which is a custom-designed globally asynchronous locally synchronous (GALS) system with 18 ARM968 processor nodes residing in synchronous islands, surrounded by a lightweight, packet-switched asynchronous communications infrastructure. In this paper, we review the design requirements for its very demanding target application, the SpiNNaker micro-architecture and its implementation issues. We also evaluate the SpiNNaker CMP, which contains 100 million transistors in a 102-mm die, provides a peak performance of 3.96 GIPS, and has a peak power consumption of 1 W when all processor cores operate at the nominal frequency of 180 MHz. SpiNNaker chips are fully operational and meet their power and performance requirements.Index Terms-Asynchronous interconnect, chip multiprocessor, energy efficiency, globally asynchronous locally synchronous (GALS), network-on-chip, neuromorphic hardware, real-time simulation, spiking neural networks (SNNs).
Abstract-The modelling of large systems of spiking neurons is computationally very demanding in terms of processing power and communication. SpiNNaker is a massively-parallel computer system designed to model up to a billion spiking neurons in real time. The basic block of the machine is the SpiNNaker multicore System-on-Chip, a Globally Asynchronous Locally Synchronous (GALS) system with 18 ARM968 processor nodes residing in synchronous islands, surrounded by a light-weight, packet-switched asynchronous communications infrastructure. The MPSoC contains 100 million transistors in a 102 mm 2 die, provides a peak performance of 3.96 GIPS and has a power consumption of 1W at 1.2V when all processor cores operate at nominal frequency. SpiNNaker chips were delivered in May 2011, were fully operational, and met power and performance requirements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.