The observation that species may be positively or negatively associated with each other is at least as old as the debate surrounding the nature of community structure which began in the early 1900's with Gleason and Clements. Since then investigating species co-occurrence patterns has taken a central role in understanding the causes and consequences of evolution, history, coexistence mechanisms, competition, and environment for community structure and assembly. This is because co-occurrence among species is a measurable metric in community datasets that, in the context of phylogeny, geography, traits, and environment, can sometimes indicate the degree of competition, displacement, and phylogenetic repulsion as weighed against biotic and environmental effects promoting correlated species distributions. Historically, a multitude of different co-occurrence metrics have been developed and most have depended on data randomization procedures to produce null distributions for significance testing. Here we improve upon and present an R implementation of a recently published model that is metric-free, distribution-free, and randomization-free. The R package, cooccur, is highly accessible, easily integrates into common analyses, and handles large datasets with high performance. In the article we develop the package's functionality and demonstrate aspects of co-occurrence analysis using three sample datasets.
Bastin et al.’s estimate (Reports, 5 July 2019, p. 76) that tree planting for climate change mitigation could sequester 205 gigatonnes of carbon is approximately five times too large. Their analysis inflated soil organic carbon gains, failed to safeguard against warming from trees at high latitudes and elevations, and considered afforestation of savannas, grasslands, and shrublands to be restoration.
Every day more than 500 million cubic meters of treated wastewater are discharged into rivers, estuaries, and oceans, an amount slightly less than the average flow of the Danube River. Typically, wastewaters have high organic carbon (OC) concentrations and represent a large fraction of total river flow and a higher fraction of river OC in densely populated watersheds. Here, we report the first direct measurements of radiocarbon (14C) in municipal wastewater treatment plant (WWTP) effluent. The radiocarbon ages of particulate and dissolved organic carbon (POC and DOC) in effluent are old and relatively uniform across a range of WWTPs in New York and Connecticut Wastewater DOC has a mean radiocarbon age of 1630 +/- 500 years B.P. and a mean delta13C of -26.0 +/- 1 per thousand. Mass balance calculations indicate that 25% of wastewater DOC is fossil carbon, which is likely derived from petroleum-based household products such as detergents and pharmaceuticals. These findings warrant reevaluation of the "apparent age" of riverine DOC, the total flux of petroleum carbon to U.S. oceans, and OC source assignments in waters impacted by sewage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.