Design curves for insertion loss of multimode polymer waveguide 90 masculine bends are reported as a function of bend radius for several waveguide widths. For the first time, to our knowledge, in multimode rectangular waveguides the insertion loss is resolved into its components of transition, radiation and propagation loss, in order of decreasing strength, separating them from input and output coupling loss by calibration and comparison of experimentally measured and beam propagation method (BPM) modeled curves. We used the method of nested bends for the first time in multimode polymer waveguides to calculate the propagation loss on a small substrate without using destructive cut-back. The lowest loss of 0.74 dB occurred for a 50 mum square cross section, Deltan=0.0296, 13.5 mm radius waveguide bend.
Abstract-The first, to our knowledge, passive, precision, selfalignment technique for direct coupling of vertical cavity surface emitting laser (VCSEL) and photodiode (PD) arrays to an array of polymer buried channel waveguides on a rigid printed circuit board (PCB) is reported. It gives insertion losses as good as the best achieved previously, to within experimental measurement accuracy, but without the need for costly active alignment nor waveguide facet polishing and so is a major step towards a commercially realizable low cost connector. Such an optical connector with four duplex channels each operating at 10 Gb/s (80 Gb/s aggregate) was designed, constructed, and its alignment precision assessed. The alignment technique is applicable to polymer waveguide interconnections on both rigid and flexible multilayer printed circuit boards (PCBs). The dependence of optical coupling loss on misalignments in , and of the VCSEL and PD arrays allows the precision of alignment to be assessed and its reproducibility on multiple mating cycles of the connector is reported. The first recorded measurements of crosstalk between waveguides when the connector is misaligned are reported. Lateral misalignments of the connector to within its tolerance are shown to have no effect on the signal to crosstalk ratio (SCR), to within experimental measurement accuracy. The insertion loss repeatability is similar to that of single mode fiber mechanically transferable (MT) connectors.
The protocol data rate governing data storage devices will increase to over 12 Gb/s by 2013 thereby imposing unmanageable cost and performance burdens on future digital data storage systems. The resulting performance bottleneck can be substantially reduced by conveying high-speed data optically instead of electronically. A novel active pluggable 82.5 Gb/s aggregate bit rate optical connector technology, the design and fabrication of a compact electro-optical printed circuit board to meet exacting specifications, and a method for low cost, high precision, passive optical assembly are presented. A demonstration platform was constructed to assess the viability of embedded electro-optical midplane technology in such systems including the first ever demonstration of a pluggable active optical waveguide printed circuit board connector. High-speed optical data transfer at 10.3125 Gb/s was demonstrated through a complex polymer waveguide interconnect layer embedded into a 262 mm 240 mm 4.3 mm electro-optical midplane. Bit error rates of less than and optical losses as low as 6 dB were demonstrated through nine multimode polymer waveguides with an aggregate data bandwidth of 92.8125 Gb/s.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.